簡易檢索 / 詳目顯示

研究生: 王以愔
Wang, I-Yi
論文名稱: 2×2矩陣的三角理論
Trigonometry of Two-by-Two Matrices
指導教授: 郭堃煌
Kuo, Kung-Hwang
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 15
中文關鍵詞: 算子三角學
外文關鍵詞: Operator Trigonometry, Numerical Range
相關次數: 點閱:141下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們主要探討在二維Hilbert空間上線性算子的三角性質。若A是一個正規矩陣,則我們發現它滿足|cos|^{2}A+|sin|^{2}A=1 和 cos^{2}A+sin^{2}A=1 這兩個等式。若A是一個非正規矩陣,我們做出一些結論,並且推測所有2 × 2的矩陣都會滿足|cos|^{2}A+|sin|^{2}A=1 的等式。

    In this thesis, we study the trigonometry of linear operators on 2-dimensional Hilbert spaces. If A is a normal matrix, then we have |cos|^{2}A+|sin|^{2}A=1
    and cos^{2}A+sin^{2}A=1. If A is a nonnormal matrix,
    then we get some conclusions and we conjecture that
    the equality |cos|^{2}A+|sin|^{2}A=1 is hold for every
    two-by-two matrices.

    1 Introduction and Some Preliminaries 1 2 Normal Matrices of Size 2 4 3 Nonnormal Matrices of Size 2 11

    [1] E. Aspulund, V.Ptak, A Minmax Inequality for
    Operators and A Related Numerical Range ,
    Acta Math.126:53-62(1971).
    [2] C. Davis, Extending the Kantorovic Inequality
    to Normal Matrices , Linear Algebra Appl.
    31:173-177(1980).
    [3] Karl.E. Gustafson, Duggirala K.M. Rao, Numerical
    Range , Springer, 1997.
    [4] Karl.E. Gustafson, Matrix Trigonometry , Linear
    Algebra Appl. 217:117-140(1995).
    [5] Karl.E. Gustafson, Operator Products and Operator
    Angles , Notices Amer.Math.Soc. 14:943(1967).
    [6] Karl.E. Gustafson, Operator Trigonometry , Linear
    and Multilinear Algebra. 37:139-159(1994).
    [7] Karl.E. Gustafson, A Min-Max Theorem , Notices
    Amer.Math.Soc. 15:799(1968d).
    [8] Karl.E. Gustafson, The Toeplitz-Hausdorff Theorem
    for Linear Operators, Proc.Amer.Math.Soc. 25:203-204
    (1970).
    [9] T.I. Seidman, An Identity for Normal-Like Operators,
    Israel J.Math. 7:249-253(1969).
    [10] M.H. Stone, Linear Transformation in HilbertSpace ,
    Amer.Math.Soc, R.I. (1932).

    下載圖示
    2007-06-21公開
    QR CODE