研究生: |
陳昱安 Chen, Yu-An |
---|---|
論文名稱: |
建築新型態空間自造 - 彈性構築系統原型設計 Self-Built Architecture: Prototyping Flexible Systems for Spatial Autonomy |
指導教授: |
劉舜仁
Liou, Shuenn-Ren 楊詩弘 Yang, Shih-Hung |
學位類別: |
碩士 Master |
系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 空間自造 、適應性構築 、建築製造系統 |
外文關鍵詞: | Self-Built Architecture, Adaptable Construction, Architectural Fabrication System |
相關次數: | 點閱:152 下載:30 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對當代建築面臨的空間自主性與構築適應性問題,建立一套完整的空間自造系統,目的在解決建築構築過程中的專業性限制與空間靈活性不足等問題,本研究以空間自造系統為核心,透過模矩化單元設計,結合摺疊幾何邏輯、數位工具輔助及低耗損切割策略,逐步構建出具彈性與永續性的空間構築系統。
研究從設計原型的建構出發,透過摺疊幾何邏輯與數位模擬工具探索單元設計的型態變化及結構穩定性,並將單元透過堆疊、鏡射與角度約束等方式,衍生出具水平延展與垂直增長能力的空間模組。在此基礎上,研究以40片標準板材作為資源框架,實驗並展示了三種空間型態:包覆性最高的靜態空間(THE COCOON)、具流動感與展示潛力的環形空間(THE GALLERY),以及具互動性與靈活翻轉特質的開放空間(THE PLAYGROUND)。
最終,研究成果展現了空間自造系統在設計彈性與構築效率上的潛力,並透過模矩單元設計回應了不同使用情境下的靈活需求。同時,研究強調開源共享與在地製造的發展特質,為未來建築設計與製造提供了可持續性實踐的方向,並開啟建築構築的新可能性。
This research addresses the growing demand for spatial autonomy and adaptable architectural systems, proposing a novel direction for architectural manufacturing design. The study develops a comprehensive self-constructed spatial system, responding to the limitations of traditional construction processes by enhancing flexibility, accessibility, and adaptability.
The research adopts a modular design approach, integrating foldable geometric logic with digital fabrication tools. Through iterative experimentation, the study begins with modular unit design, optimizing material usage through low-waste cutting strategies. Three spatial systems—THE COCOON, THE GALLERY, and THE PLAYGROUND—are developed and tested to demonstrate the versatility and scalability of modular units. These systems showcase dynamic spatial configurations, responding to varying needs for enclosure, openness, and functional transformation.
Results confirm that the proposed modular system can efficiently achieve rapid assembly, disassembly, and space reconfiguration while addressing sustainable development goals. The findings provide a viable framework for open-source, locally manufactured, and adaptable architectural systems, offering new possibilities for future spatial design and construction practices.
[1] Agirbas, A. (2017). The Use of Simulation for Creating Folding Structures. 35th Annual Conference eCAADe: ShoCK!, Sapienza University of Rome, Rome, Italy. . 10.52842/conf.ecaade.2017.1.325
[2] Parvin, A.; Saxby, D.; Cerulli, C. ; Schneider, T. (2011). A Right To Build: The next mass-housebuilding industry. Architecture 00.
[3] Koo, B.; Hergel, J.; Lefebvre, S. ; Mitra, N-J. (2017). Towards Zero-Waste Furniture Design. IEEE Transactions on Visualization and Computer Graphics, 23(12), 2627-2640. 10.1109/TVCG.2016.2633519
[4] Durmisevic, E (2006). Transformable building structures: Design for dissassembly as a way to introduce sustainable engineering to building design & construction [Doctoral thesis].
[5] Zhu, H.; Liou, S-R.; Chen, P-C. ; He, X-Y. & Sui, M-L. (2024). Carbon Emissions Reduction of a Circular Architectural Practice: A Study on a Reversible Design Pavilion Using Recycled Materials. Sustainability (Switzerland), 16(5), 文章 1729. https://doi.org/10.3390/su16051729
[6] Jian, B.; Demoly, F.; Zhang, Y. & Gomes, S. (2019). An origami-based design approach to self-reconfigurable structures using 4D printing technology. 29th Procedia CIRP, 84, 159-164. https://doi.org/10.1016/j.procir.2019.04.184
[7] Mode Lab Company. (2015). Grasshopper - An Overview. Grasshopper Primer website. Retrieved on Apr. 2020 from http://grasshopperprimer.com/en/0-about/1-grasshopper-an-overview.html
[8] Habraken, N. (1961). De dragers en de mensen: het einde van de massawoningbouw. Eindhoven: Stichting Architecten Research.
[9] OSAKA GAS(2013). The Osaka Experimental Housing Next21 pamphlet(p2-6).
[10] Priavolou, C. (2018, December). The Emergence of Open Construction Systems: A Sustainable Paradigm in the Construction Sector? Journal of Futures Studies, 23(2), 67-84. DOI:10.6531/JFS.201812_23(2).0005
[11] Robeller, C. (2015). Integral Mechanical Attachment for Timber Folded Plate Structures [Doctoral thesis]. 10.5075/epfl-thesis-6564
[12] Brand, S. (1995). How Buildings Learn: What Happens After They're Built, Shearing layers, p 13. Viking Press.
[13] Suto, K.; Noma, Y.; Tanimichi, K. ; Narumi, K., & Tachi, T. (2023). Crane: An integrated computational design platform for functional, foldable, and fabricable origami products. ACM Transactions on Computer-Human Interaction, 30(4), 1-29. https://doi.org/10.1145/3576856
[14] Tachi, T. (2009, August). Simulation of Rigid Origami. Origami 4, 1st ed, chapter 16 10.1201/b10653-20
[15] Bouzas Cavada, M.; Bouzas Barcala, M.; Álvarez García, C. (2017). Pavilion Plaza Escuelas Trevijano Concéntrico 03. https://concentrico.es/en/origami/
[16] Wikihouse Open Systems Lab(2023). Wikihouse Community.https://community.wikihouse.cc/t/design-questions-internal-partition-walls-roof-slope-nails-screws-dimensions-spacing/273
[17] 王祈雅(2013)。參數化折疊表面之建築設計應用 [碩士論文]。私立淡江大學
[18] 林麗珠(2017,1月)。開放建築的關鍵技術及應用。臺灣建築學會會刊雜誌NO.85主題-開放建築與類型論, 69, 27-32。
[19] 呂治佳(2022)。可重置摺剪造型適應型態研究 [碩士論文]。私立中原大學