| 研究生: |
吳旭斌 Wu, Hsu-Pin |
|---|---|
| 論文名稱: |
氮化鋁燃燒合成量產及氮化硼抗侵蝕塗料製程開發 Development of Scale-up Production for Combustion Synthesis of Aluminum Nitride and Process Development for Boron Nitride Anti-corrosion Coatings |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 氮化鋁 、燃燒合成 、氮化硼 、氮化硼抗侵蝕塗料 |
| 外文關鍵詞: | Aluminum nitride, Combustion synthesis, Boron nitride, Boron nitride anti-corrosion Coatings |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究包含兩大主題:(1)氮化鋁燃燒合成量產(2)氮化硼抗侵蝕塗料製程開發。在氮化鋁燃燒合成量產研究方面,主要目的是經由製程改良以提高氮化鋁之轉化率及產率。此研究分為三大部分:第一部分由於實驗室原製程所合成出氮化鋁產物,產物周圍和底部均出現黑色產物,經由XRD分析證實黑色產物中含有未反應的鋁,第二部份發現添加氮化鋁在反應物內部周圍及底部作為稀釋劑可讓高溫鋁液塗覆降低鋁熔聚現象,但氮化鋁粒徑需小於100mesh且添加量須達50wt%以上才有明顯效果,但仍有部分鋁熔聚現象存在而且氮化鋁價格昂貴,使添加氮化鋁製程不利於放大量產且大幅提升生產成本;最後添加氫氧化鋁當稀釋劑取代氮化鋁,結果顯示僅需添加4wt%於反應物內部周圍及底部,即可解決鋁熔聚問題,同時提高轉化率達99%(原先98%),高純度氮化鋁(氮化鋁轉化率99%且氧含量小於1wt%)產率提高25wt%。氮化硼抗侵蝕塗料製程開發方面,主要目的是利用氮化硼具有耐高溫、防沾黏等特性,製作塗料解決矽長晶工業問題。本論文設計兩種不同塗料配方,在膨潤土製程配方中採用氮化硼作為抗侵蝕、防沾黏之陶瓷粉體、去離子水作為液相載體、膨潤土為高溫黏結劑、氨水為PH調節劑。在1300oC熱處理後,膨潤土黏結劑無法與石英基材形成良好鍵結,所製備之氮化硼塗料受測試膠帶多次撥離後幾乎無塗層殘留。氫氧化鋇製程配方中採用氮化硼-二氧化矽複合材料作為抗侵蝕、防沾黏之陶瓷粉體、去離子水作為液相載體、氫氧化鋇為高溫黏結劑,氫氧化鋇黏結劑在1300oC、1450oC熱處理後,與基材附著度優異,並抑制石英轉變成方石英所產生之體積效應;所製備之氮化硼塗料在1300oC、1450oC熱處理後,受測試膠帶多次撥離,透過SEM觀察塗層表面形貌外觀,塗層表面皆有氮化硼鍵結,這些發現將有助於氮化硼塗料開發和應用。
The research of this thesis includes two main subjects. One is development of scale-up production for combustion synthesis of aluminum nitride, another is process development for boron nitride anti-corrosion coatings. In the research of development of scale-up production for combustion synthesis of aluminum nitride. The main purpose is to improve the converstion and yield of aluminum nitride through process improvement. The study is divided into three major parts. First part is due to the aluminum nitride product synthesized by the original laboratory process. Black product appeared around and bottom of the product and it is detected unreacted aluminum by XRD analysis. Second part describles the method of process improvement based on the previous results from first part and literature. Aluminum nitride is added as a diluent at surrounding and bottom of the reactants. However, the aluminum nitride particle size needs to be less than 100 mesh and the amount must be more than 50 wt% to have a significant effect. There is still some aluminum coalescence phenomenon that is not propitious for scale-up Production for aluminum nitride and significantly increase production costs. Final part describles the second part was improved by adding aluminum hydroxide instead of aluminum nitride. The results showed that only 4wt% of the aluminum hydroxide was added at surrounding and bottom of the reactants. This can solve the problem of aluminum coalescence and increase the conversion up to 99%, high purity aluminum nitride yield grows by 25 wt%. In the research of process development for boron nitride anti-corrosion coatings. The main purpose is to use boron nitride characteristics of high temperature resistance and anti-corrosion to develop of boron nitride coatings and solve the problems of silicon crystal growth industry. In this research, two different coating formulations were designed. The recipe of bentonite process, boron nitride is used as anti- corrosion ceramic powders, water is used as liquid carrier, bentonite is used as binder and ammonia is PH agent. The bentonite binder could not form a good bond with the quartz substrate after heat treatment at 1300oC. The boron nitride coating was teared off by test tape and there is almost no boron nitride coating residue under the critical adhesion test. The recipe of barium hydroxide process, boron nitride is used as anti-corrosion ceramic powders, water is used as liquid carrier and barium hydroxide is used as binder. The adhesion of barium hydroxide has an excellent performance after 1300oC and 1450oC heat treatment. The binder of barium hydroxide also can resist the volumetric effect of the cristobalite. After 1300oC and 1450oC heat treatment, boron nitride coatings pass critical adhesion test. Through the SEM observation of the surface morphology of the coating, h-BN particles binds tightly on the coating surface. These findings will be helpful for developing and applying of boron nitride coatings.
1. 汪建民, 陶瓷技術手冊Ceramic technology handbook, 中華民國產業科技發展協會, pp.781-783, 1994.
2. H. K. Sander, “High-tech ceramics,” in C&E News, ed, July 9, 1984.
3. 吳朗, 電子陶瓷-入門, 1992.
4. N. Kuramoto, H. Taniguchi, and I. Aso, “Development of translucent aluminum nitride ceramics”, American Ceramic Society Bulletin, Vol.68, No.4, pp.883-887, 1989.
5. L. M. Sheppard, “Aluminum nitride. A versatile but challenging material”, American Ceramic Society Bulletin, Vol.69, No.11, pp.1801-1812, 1990.
6. J. C. Nipko and C.-K. Loong, “Phonon excitations and related thermal properties of aluminum nitride”, Physical Review B, Vol.57, No.17, pp.10550-10554, 1998.
7. G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AlN”, Journal of Physics and Chemistry of Solids, Vol.48, No.7, pp.641-647, 1987.
8. E. Man, F. Yan, Ame. Cera. Soc., Inc. Vol.26, pp.19-54, 1994.
9. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, “High thermal conductivity aluminum nitride ceramic substrates and packages”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.13, No.2, pp.313-319, 1990.
10. 林正雄, “使用氮化鋁及氮化硼填充 以提升環氧樹脂熱傳導性之研究”, 國立成功大學博士論文, 2017.
11. T. Watari, T. Akizuki, H. Ikeda, T. Torikai, and O. Matsuda, “Shape of AlN powders prepared by vapor phase reaction of AlCl3•NH3- NH3-N2 system”, Journal of the Ceramic Society of Japan, Vol.97, No.8, pp.864-867, 1989.
12. G. Selvaduray and L. Sheet, “Aluminum nitride-review of synthesis methods”, Materials Science and Technology, Vol.9, No.6, pp.463-473, 1993.
13. F. J.-H. Haussonne, “Review of the synthesis methods for AlN”, Materials and Manufacturing Processes, Vol.10, No.4, pp.717-775, 1995.
14. N. Kuramoto and H. Taniguchi, “Fine powder of aluminum nitride, composition and sintered body thereof and processes for their production”, U.S. Patent No.4,618,592, 1986.
15. R. Bachelard and P. Joubert, “Aluminum Nitride by Carbothermal Nitridation”, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol.109, pp.247-251, Mar 1989.
16. T. Okada, M. Toriyama, and S. Kanzaki, “Synthesis of aluminum nitride sintered bodies using the direct nitridation of Al compacts”, Journal of the European Ceramic Society, Vol. 20, No.6, pp.783-787, May 2000.
17. K. G. Nickel, R. Riedel, and G. Petzow, “Thermodynamic and Experimental Study of High-Purity Aluminum Nitride Formation from Aluminum Chloride by Chemical Vapor Deposition”, Journal of the American Ceramic Society, Vol.72, No.10, pp.1804-1810, Oct 1989.
18. R. Riedel and K. -U. Gaudl, “Formation and Characterization of Amorphous Aluminum Nitride Powder and Transparent Aluminum Nitride Film by Chemical Vapor Deposition”, Journal of the American Ceramic Society, Vol.74, No.6, pp.1331-1334, Jun 1991.
19. W. G. Moore, S. D. Dunmead, K. E. Howard, and K. C. Morse, “Aluminum nitride, aluminum nitride containing solid solutions and aluminum nitride composites prepared by combustion synthesis”, U.S. Patent No.5,649,278, 1997.
20. S. L. Chung, W. L. Yu, and C. N. Lin, “A self-propagating high-temperature synthesis method for synthesis of AlN powder”, Journal of Materials Research, Vol.14, No.5, pp.1928-1933, May 1999.
21. S. M. Bradshaw and J. L. Spicer, “Combustion synthesis of aluminum nitride particles and whiskers”, Journal of the American Ceramic Society, Vol.82, No.9, pp.2293-2300, Sep 1999.
22. E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi, “Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride”, Physical Review, B13(10), 4609, 1976.
23. Y Tian, B Xu, and D Yu, “Ultrahard nanotwinned cubic boron nitride”, Nature, Vol.9493, No.7432, pp.385-388, 2013.
24. L. vel, G. Demazeau and J. Etourneau, “Cubic boron nitride: synthesis, physicochemical properties and applications”, Materials Science and Engineering, Vol.10, pp.149-164, 1991.
25. 丁言民, “氮化硼燃燒合成製程開發”, 國立成功大學碩士論文, 2017.
26. S. Rudolph, “Boron nitride release coatings”,7th Australian Asian Pacific Conference, Aluminum Cast House Technology, pp.163-170, 2001.
27. D. M. Hoffman, G. L. Doll, and P. C. Eklund, “Optical properties of pyrolytic boron nitride in the energy range 0.05—10 eV”, Physical review B, Vol.30, No.10, pp.6051-6052, 1984.
28. R. Geick, C. H. Perry, and G. Rupprecht, “Normal modes in hexagonal boron nitride”, Physical Review, Vol.146, No.2, pp.543, 1966.
29. T. Takahashi, H. Itoh, and M. Kuroda, “Structure and properties of CVD-BN thick film prepared on carbon steel substrate”, Journal of Crystal Growth, Vol.53, No.2, pp.418-422, 1981.
30. M. W. Chase, Jr., “NIST-JANAF Themochemical Tables”, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, pp.1-1951, 1998.
31. R. T. Paine and C. K. Narula, “Synthetic routes to boron nitride”, Chemical Reviews, Vol.90, No.1, pp.73-91, 1990.
32. A. Lipp, K.A. Schwetz, and K. Hunold, “Hexagonal boron nitride: Fabrication, properties and applications”, J Eur Ceram Soc., Vol.5, No.1, pp.3-9, 1989.
33. C. Zhi, Y. Bando, C. Tan, D. Golberg, “Effective precursor for high yield synthesis of pure BN nanotubes”, Solid State Communications, Vol.135, No.1-2, pp.67-70, 2005.
34. S. J. Yoon and A. Jha, “Vapour-phase reduction and the synthesis of boron-based ceramic phases. Part Ⅰ The phase equilibria in the B-C-N-O system”, Journal of Materials Science, Vol.30, No.3, pp.607-614, 1995.
35. F. L. Deepak, C. P. Vinod, K. Mukhopadhyay, A. Govindaraj, and C. N. R. Rao, “Boron nitride nanotubes and nanowires”, Chemical Physics Letters, Vol.353, No.5-6, pp.345-352, 2002.
36. 徐煜翔, “燃燒合成氮化硼之製程開發”, 國立成功大學博士論文, 2015.
37. A. G. Merzhanov, “History and Recent in SHS,” Ceramics International, Vol. 21, pp. 371-379, 1995.
38. L. M. Sheppard, “Powders that Explode into materials”, Adv. Mater. and Process, Vol.129, No. pp.25-32, 1986.
39. Z. A. Munir, “Synthesis of high-temperature materials by self-propagating combustion methods”, American Ceramic Society Bulletin, Vol.67, No.2, pp.342-349, Feb 1988.
40. J. Subrahmanyam and M. Vijayakumar, “Self-propagating high-temperature synthesis”, Journal of Materials Science, Vol.27, No.23, pp.6249-6273, Dec 1992.
41. J. B. Holt and S. D. Dunmead, “Self-heating synthesis of materials”, Annual Review Materials Science, Vol.21, pp.305-334, 1991.
42. B. I. Khaikin and A. G. Merzhanov, “Theory of thermal propagation of a chemical reaction front”, Combustion Explosion and Shock Waves, Vol.2, No.3, pp.22-&, 1966.
43. A. G. Strunina, T. M. Martem’yanova, V. V. Barzykin, and V. I. Ermakov, “Ignition of gasless systems by a combustion wave”, Combustion Explosion and Shock Waves, Vol.10, No.4, pp.449-455, 1974.
44. B. V. Novozhilov, “The rate of propagation of the front of an exothermic reaction in a condensed phase”, Dokl. Akad. Nauk SSSR, Vol.141, pp.151-153, 1961.
45. A. Z. Merzahanov, V. M. Skhiro, and P. Borovinskaja, USSR Pat. No. 255 221,1971
46. K. Chen, C. Ge, J. Li and W. Cao, “Microstructure and thermokinetics analysis of combustion synthesized AlN”, Journal of Materials Research, Vol.14, pp.1944-1948, 1999..
47. G. J. Jiang, H. R. Zhuang, W. L. Li, F. Y. Wu, B. L. Zhang, and X. R.Fu, “Mechanisms of the Combustion Synthesis of Aluminum Nitride in High Pressure Nitrogen Atmosphere (2) ”, Journal of Materials Synthesis and Processing, Vol. 9, pp. 49–56, Jan 2001.
48. R. Fu, K. Chen, S. Agathopoulos, J.M.F. Ferreira, “Factors which affect the morphology of AlN particles made by self-propagating high-temperature synthesis (SHS)”, Journal of Crystal Growth, Vol. 296, pp. 97-103, 2006.
49. S. L. Chung, W. L. Yu and C.N. Lin, “A self-propagating high-tempeature synthesis method for synthesis of AlN powder” J.Mater. Res., Vol. 14, pp.1928-1933, 1999.
50. 林俊男, “燃燒合成氮化鋁粉體之製程開發與機構探討”, 國立成功大學博士論文, 2001.
51. L. Qiao, S. Chen, J. Zheng, L. Jiang, S. Che, “ Preparation and formation mechanism of aluminum nitride ceramic particles from large aluminum powder by self-propagating high temperature synthesis”, Advanced Powder Technology, Vol. 26, pp. 830-835, 2015.
52. V. V. Zakorzhevskii, and I. P. Borovinskaya “ Combustion Synthesis of Submicron AlN Particles ” Inorganic Materials, Vol. 51, No. 6, pp. 566–571 ,2015.
53. 孫寶德, 張佼, 萬祥輝, 東青, 李飛, 韓延峰, 和董安平, “精鋁提純用鐵基坩堝防護複合塗層”, C.N. Patent No.104,889,036, 2016.
54. 王俊, 疏達, 李克, 倪紅軍, 張佼, 和孫寶德, “耐鋅液腐蝕的塗層及其使用方法”, C.N. Patent No.1,235,702, 2006.
55. A.F. Holleman and E. Wyberg, “Lehrbuch der anorganischen Chemie”, Walter Gruyter Verlag, Berlin, New York, ISBN:3-11-007511-3, 1985.
56. R. Rykart, “ Quarz-Monographie - Die Eigenheiten von Bergkristall, Rauchquarz, Amethyst, Chalcedon, Achat, Opal und anderen Varietäten”, Ott Verlag Thun, 2nd. Edition, ISBN:3-7225-6204-X, 1995.
57. 張智偉, “燃燒法合成氮化鋁粉體之新製程開發”, 國立成功大學碩士論文, 2003.
58. “Paints and varnishes,Cross-cut test”, International Organization for Standardization, ISO 2409-1992, 1992.
59. “色漆和清漆漆膜的划痕實驗”, 中華人民共和國國家標準, GBT9286-1998, 1988.
60. “Standard Test Methods for Rating Adhesion by Tape Test”, American Society for Testing and Materials, ASTM D3359, 2010.
61. 陳煥煜, “使用不同形態之鋁粉以燃燒合成法製備氮化鋁粉體之製程開發及反應機構探討”, 國立成功大學碩士論文, 2011.
62. 陳俊霖, “氮化鋁之燃燒合成製程改良及量產技術研究”, 國立成功大學碩士論文, 2016.
63. V. Serin, C. Colliex, R. Brydson, S. Matar and F. Boucher, “EELS investigation of the electron conduction-band states in wurtzite AlN and oxygen-doped AlN(O) ”, PHYSICAL REVIEW B, Vol. 58, pp. 5106-5114, 1998.
64. G. A. Slack, L. J. Schowalter, D. Morelli, and J. A. Freitas, Jr, “Some effects of oxygen impurities on AlN and GaN”, Journal of Crystal Growth, Vol. 246, pp. 287-298, 2002.
65. A. Sedhain, L. Du, J. H. Edgar, J. Y. Lin, and H. X. Jiang, “The origin of 2.78 eV emission and yellow coloration in bulk AlN substrates”, American Institute of Physics, Vol. 95, pp. 262104, 2009.
66. F. Mahvash, S. Eissa, T. Bordjiba, A. C. Tavares, T. Szkopek, and M. Siaj, “Corrosion resistance of monolayer hexagonal boron nitride on copper”, Scientific Reports, Vol.7, pp.42139, 2017.
67. M. Vippola, S. Ahmaniemi, J. Keränen, P. Vuoristo, T. Lepistö, T. Mäntylä, and E. Olsson, “Aluminum phosphate sealed alumina coating: characterization of microstructure”, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol.323, No.1-2, pp.1-8, 2002.
68. C. Xiong and W. Tu, “Synthesis of Water-Dispersible Boron Nitride Nanoparticles”, European Journal of Inorganic Chemistry, Vol.2014, No.19, pp.3010-3015, 2014.
69. G.P. Jiang, J.F. Yang, J.Q. Gao and K. Niihara “ Characterization of porous silicon nitride ceramics using bentonite as binder and sintering additive”, MATERIALS CHARACTERIZATION, Vol.60, pp.456-460, 2009.
70. 林雨村, “氮化硼高導熱複合材料與抗侵蝕塗料之製程研發”, 國立成功大學碩士論文, 2017.
71. 徐昌華, 吳潔, 張安, 秦舒, 史才成, “石英坩堝塗層製備方法”, C.N. Patent No.102260902 B.
72. B. V. L’vov and V. L. Ugolkov “ Peculiarities of CaCO3, SrCO3 and BaCO3 decomposition in CO2 as a proof of their primary dissociative evaporation”, Thermochimica Acta , Vol.410, pp.47-55, 2004.
73. R. Zhang, H. Mao and P. Taskinen “Thermodynamic descriptions of the BaO-CaO,BaO-SrO,BaO-SiO2 and SrO-SiO2 systems”, Computer Coupling of Phase Diagrams and Thermochemistry, Vol.54, pp.107-116, 2016.
74. H. Chen, C. Xu, G. Xiao, Z Chen, J. Ma, G. Wu, “Synthesis of(h-BN)/SiO2 core–shell powder for improved self-lubricating ceramic composites”, Ceramics International, Vol.42, pp.5504-5511, 2016.
75. R.P. Sear, “Nucleation : theory and applications to protein solutions and colloidal suspensions”, Journal of Physics: Condensed Matter, Vol.19, pp.1-28, 2007.
76. Y. Song, X. Cao, Y. Guo, P. Chen, Q. Zhao, G. Shen, “Fabrication of mesoporous CdTe/ZnO@SiO2 core/shell nanostructures with tunable dual emission and ultrasensitive fluorescence response to metal ions”, Chem. Mater. , Vol.21, pp.68-77, 2008.
77. 翁德名, “氮化硼塗料開發與氮化鋁之燃燒合成及表面改質製程研究”, 國立成功大學碩士論文, 2017.