| 研究生: |
蕭育展 Siao, Yu-Jhan |
|---|---|
| 論文名稱: |
石榴石結構稀土鐵氧體的磁學與介電性質之研究 Magnetic and Dielectric Properties of Rare-earth Iron Garnets |
| 指導教授: |
齊孝定
Qi, Xiaoding |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 稀土石榴石 、磁性 、介電 、磁介電 |
| 外文關鍵詞: | rare-earth iron garnet, dielectric, magnetic, magnetodielectric |
| 相關次數: | 點閱:54 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近期發現稀土鐵石榴石結構(R3Fe5O12, RIG)在低磁場下(2 kOe)具有顯著的磁介電耦合效應,相較於過去多鐵性材料中磁場須達到10 kOe以上才能引發的磁電耦合效應更有廣泛的應用前景。磁電耦合中的鐵電起因是很明確地,但是磁介電耦合中的介電響應具有多種起源,不同的起源將會以不一樣的方式與外加磁場耦合,進而引發不同的磁介電耦合機制,因此探討介電響應的起源則突顯其重要性。除此之外,介電是相對於非金屬材料而言,顯然磁介電材料的選擇必須由磁性氧化物來著手,因此本論文選用具代表性的鐵氧體R3Fe5O12 (RIG, R=Y, Tb, Lu)、R3-xBixFe5O12 (RIG:Bi, R=Y, Lu)以及Y3-xTbxFe5O12 (YIG:Tb)做為研究主軸,利用固相燒結法製備上述磁性氧化物陶瓷,搭配Rietveld方法精算結構原子位置,以利探討結構中多面體的扭曲對磁性的影響以及廣泛的溫度範圍內介電鬆弛的影響機制,企圖揭開多晶RIG材料的介電反應起源,主要成果概述如下。
(1) 所有樣品經由XRD確認後均為純相石榴石結構,並藉由Rietveld法精算結構後,發現氧配位多面體極度不對稱於中心陽離子,而摻雜Bi及Tb後的樣品其晶格常數也隨著濃度提升而逐漸增加,證實Bi與Tb確實進入晶格當中。XPS能譜分析中,除了發現主要的Fe3+外也包含相當多的Fe2+,且Bi2+也在YIG:Bi中被觀察到,但LuIG:Bi則沒有。
(2) 介電性質方面,未摻雜的RIG樣品利用實驗所獲得的介電、modulus以及阻抗數據,參照Debye與Maxwell-Wanger兩種理論模型來擬合並交叉比對,結果顯示在室溫下的介電鬆弛是由Debye模型主導過程,高溫時則是轉由Maxwell-Wanger效應主導。此外,LuIG的介電常數與YIG、TbIG相較起來也明顯大得多,其原因推論是由LuIG結構中FeO6及FeO4多面體的扭曲所造成,導致電子在四面體及八面體中產生躍遷現象時而貢獻出極大的偶極矩。互為固溶體的YIG:Tb,在量測溫度觀察到兩個階梯狀鬆弛,分別位於300-373 K與443-543 K,其中低溫鬆弛的活化能為0.38 eV與Fe2+極化子的熱活化有關,高溫鬆弛的活化能介於1.32-1.01 eV之間則是與氧缺陷有關,且存在於TbIG中的Fe2+/Fe3+發生電荷躍遷時也會比YIG中還快。在摻雜Bi的體系中,LuIG:Bi於室溫下的介電常數以及高溫區Maxwell-Wanger效應皆隨著Bi增加而下降;而YIG:Bi在室溫下的介電常數則是先由低濃度的增加(x<0.4)到最後迅速地下降(x≥0.6),且階梯狀的鬆弛現象亦隨著摻雜濃度提升後往高溫方向偏移,推論變價離子的濃度主導整體的介電鬆弛行為。
(3) 磁性性質方面,無磁性的Bi離子佔據24c位置時,居禮溫度(Tc)均伴隨著Bi含量提升而增加,而飽和磁化量(Ms)在YIG:Bi中則反之,但是在LuIG:Bi中卻變化不大。藉以Bloch定律擬合YIG:Bi的Ms-T曲線,其中T3/2項的顯著變化證明Bi在晶格內產生強烈的交換偶合。在YIG:Tb中,Ms-T曲線則觀察到補償溫度由x=3的256 K下降到x=1的77 K。
(4) 針對LuIG:Bi進行磁電效應分析,由結果顯示當外加磁場<1500 Oe時,磁電係數隨Bi濃度提升而銳減,由x=0的0.29 mV/cmOe下降至x=0.9的0.012 mV/cmOe。此外,於外加磁場<400 Oe觀察到正磁致伸縮,而高於500 Oe則是發生負磁致伸縮,其結果符合於柯爾效應(MOKE)的Ms-H曲線於400 Oe所觀察到的磁矩翻轉點。
In this study, a range of polycrystalline rare-earth iron garnets (RIG) were synthesized by the solid state reaction method, including R3Fe5O12 (R=Y, Tb and Lu), R3-xBixFe5O12 (R=Y and Lu, x=0.2-1.0) and Y3-xTbxFe5O12 (x=1.0-3.0). The crystal structures of the samples were refined by the Rietveld method, which showed that the oxygen coordination polyhedra in RIG were highly asymmetric against the central cations. X-ray photoelectron spectroscopy showed small amount of Fe2+ in addition to the dominant Fe3+ in most of the obtained samples. A mixed oxidation state of Bi3+/Bi2+ was also observed in Y3-xBixFe5O12 but absent in Lu3-xBixFe5O12. The dielectric responses of the samples were studied in detail by cross examination of the permittivity, modulus and impedance presentations. Fitting the experimental data with the Debye and Maxwell-Wagner models revealed that the dielectric relaxation at room temperature was dominated by the Debye-type process while at elevated temperature the Maxwell-Wagner response gradually took over. Electron hopping between Fe2+/Fe3+ and Bi2+/Bi3+ may be responsible for the observed behaviors. At low temperature, electron hopping was localized and therefore described well by the Debye-type relaxation. As the temperature increased, electron hopping became long-range, crossing over grain boundaries frequently, and hence showed the Maxwell-Wagner response owing to the large difference in impedance between the grain and grain boundary. Compared to YIG and TbIG, the low frequency permittivity of LuIG was much larger. This may be explained by the large difference between the distortions of FeO6 and FeO4 in LuIG and therefore, a large dipole moment was created when the electron hopping between the octahedral and tetrahedral sites took place. In addition to the dielectric properties, the magnetic and magnetoelectric properties were also studied and discussed in correlation with their structure distortions and defects.
[1] B. Lorend, Y.Q. Wang, C.W. Chu, Ferroelectricity in Perovskite HoMnO3 and YMnO3, Phys. Rev. B 76 (2007) 104405.
[2] L. J. Wang, S. M. Feng, J. L. Zhu, R. C. Yu, C. Q. Jin, W. Yu, X. H. Wang, L. T. Li, Ferroelectricity of multiferroic hexagonal TmMnO3 ceramics synthesized under high pressure, Appl. Phys. Lett. 91 (2007) 172502.
[3] T. Katsufuji, M. Masaki, A. Machida, M. Moritomo, K. Kato, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, K. Kitazawa, and H. Takagi, Crystal structure and magnetic properties of hexagonal RMnO3 (R=Y, Lu and Sc) and effect of doping, Phys. Rev. B 66 (2002) 134434.
[4] C. T. Wu, Y. Y. Hsu, B. N. Lin, H. C. Ku, Mn k-edge XANES of hexagonal manganites RMnO3 (R= Sc, Y), Physica B 329-333 (2003) 709-710.
[5] T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, H. Takagi, Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R=Y, Yb and Lu), Phys. Rev. B 64 (2001) 104419.
[6] S. Mori, J. Tokunaga, Y. Horibe, Y. Aikawa, T. Katsufuji, Magnetocapacitance effect and related microstructure in Ti-doped YMnO3, Phys. Rev. B 72 (2005) 224434.
[7] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, Y. Tokura, Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites, Phys. Rev. Lett. 92 (2004) 257201.
[8] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic contral of ferroelectric polarization, Nature 426 (2003) 55-58.
[9] B. Lorenz, Y. Q. Wang, Y. Y. Sun, C. W. Chu, Large magnetodielectric effects in orthorhombic HoMnO3 and YMnO3, Phys. Rev. B 70 (2004) 212412.
[10] C. Cruz, F. Yen, B. Lorenz, Y. Q. Wang, Y. Y. Sun, M. M. Gospodinov, C. W. Chu, Strong spin-lattice coupling in multiferroic HoMnO3: thermal expansion anomalies and pressure effect, Phys. Rev. B 71 (2005) 060407.
[11] C. H. Yang, T. Y. Koo, Y. H. Jeong, How to obtain magnetocapacitance effect at room temperature: the case of Mn-doped BiFeO3, Solid State Commun. 134 (2005) 299-301.
[12] F. Yen, B. Lorenz, Y.Y. Sun, C.W. Chu, L.N. Bezmaternykh, A.N. Vasiliev, Magnetic field effect and dielectric anomalies at the spin reorientation phase transition of GdFe3(BO3)4, Phys. Rev. B 73 (2006) 054435.
[13] G. Lawes, A. P. Ramirez, C. M. Varma, M.A. Subramanian, Magnetodielectric effects from spin fluctuations in isostructural ferromagnetic and antiferromagnetic system, Phys. Rev. Lett. 91 (2003) 257208.
[14] D. H. Wang, C. K. Ong, The phase formation and magnetodielectric property in (1-x)Bi2Fe4O9-xBaO composites, J. Appl. Phys. 100 (2006) 044111.
[15] J. Hemberger, P. Lunkenheimei, R. Fichtl, V. Tsurkan, A. Loidl, Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4, Nature, 434 (2005) 364-367.
[16] S. Weber, P. Lunkenheimei, R. Fichtl, J. Hemberger, V. Tsurkan, A. Loidl, Colossal magnetocapacitance and colossal magnetoresistance in HgCr2S4, Phys. Rev. Lett. 96 (2006) 157202.
[17] Y. Kohara, Y. Yamasaki, Y. Onose, Y. Tokura, Excess-electron induced polarization and magnetoelectric effect in yttrium iron garnet, Phys. Rev. B 82 (2009) 104419.
[18] N. Hur, S. Park, S. Guha, A. Borissov, V. Kiryukhin, S.W. Cheong, Low-field magnetodielectric effect in terbium iron garnets, Appl. Phys. Lett. 87 (2005) 042901.
[19] X. B. Wu, X. F. Wang, Y. F. Liu, W. Cai, S. Peng, F. Z. Huang, X. M. Lu, F. Yan , S. Zhu, Study on dielectric and magnetodielectric properties of Lu3Fe5O12 ceramics, Appl. Phys. Lett. 95 (2009) 182903.
[20] G. Catalan, Magnetocapacitance without Magnetoelectric Coupling, Appl. Phys. Lett. 88 (2006) 102902.
[21] Y. J. Wu, C. Yu, X. M. Chen, J. Li, Magnetic and magnetodielectric properties of Bi-substituted yttrium iron garnet ceramics, J. Magn. Magn. Mater. 324 (2012) 3334-3337.
[22] D. Vladikova, Z. Stoynov, M. Viviani, Application of the differential impedance analysis for investigation of electronceramics, J. Eur. Ceram. Soc, 24 (2004) 1121-1127.
[23] I. D. Lomako, S. N. Shashkov, I. I. Makoed, Dielectric properties of Y3Fe5O12 garnet crystals in the IR range, Crystallogr. Rep. 50 (2005) 966.
[24] A. M. Hofmeister, K. R. Campbell, Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets, J. Appl. Phys. 72 (1992) 638.
[25] P. K. Larsen, R. Metselaar, Electric and dielectric properties of polycrystalline yttrium iron garnet: space-charge-limited currents in an inhomogeneous solid, Phys. Rev. B 8 (1973) 2016.
[26] Y. Y. Song, S. C. Wu, W. T. Kim, J. R. Park, T. H. Kim, The effect of Bi2O3 addition on the microstructure and magnetic properties of YIG, J. Magn, Magn. Mater. 257 (1998) 177-181.
[27] S. Geller, H. J. Walliams, G. P. Espinosa, R. C. Shellwood, M. A. Gelleo, Reduction of the preparation temperature of polycrystalline garnets by bismuth substitution, Appl. Phys. Lett. 3 (1963) 2.
[28] H. Zhao, J. Zhao, Y. Bai, Z. Gui and L. Li, Effect of Bi-substitution on the dielectric properties of polycrystalline yttrium iron garnet, J. Magn. Magn. Mater. 280 (2004) 208.
[29] Y. J. Wu, Y. Gao, X.M. Chen, Dielectric relaxation of yttrium iron garnet ceramics over a broad temperature range, Appl. Phys. Lett. 91 (2007) 092912.
[30] K. H. J. Buschow, F. R. de Boer, Physics of Magnetism and Magnetic Materials, Kluwer Academic, New York (2003).
[31] A. Chelkowski, Dielectric physics, Silesian University Katowicw, Poland (1975).
[32] D. Shi, Functional thin films and functional materials: new concepts and technologies, 1nd Ed., Springer, New York (2003).
[33] K. C. Kao, Dielectric phenomena in solid: with emphasis on physical concepts of electronic processes, Academic press (2004).
[34] D. Vladikova, The technique of the differential impedance analysis part I: basics of the impedance spectroscopy, Adv. Tech. Energy Sources Invest. and test, 2-4 (2004) L8-1.
[35] Soshin Chikazumi, Physics of magnetism, New York, Wiley (1964).
[36] S. Geller, J. P. Remeika, R. C. Sherwood, H. J. Williams, G. P. Espinosa, Magnetic study of the Heavier rare-earth iron garnets, Phys. Rev. 137 (1965) A1034.
[37] Z. Cheng, H. Yang, Y. Cui, L. Yu, X. Zhao, S. Feng, Synthesis and magnetic properties of Y3-xDyxFe5O12 nanoparticles, J. Magn. Magn. Mater. 308 (2007) 5-9.
[38] J. M. Sharp, S. A. Wentworth, Kinetic Analysis of Phermogravimetric Data, Anal. Chem. 41 (1969) 2060.
[39] W. Jander, Peaktionen im festen zustande bie hoheren temperature, Z. Anorg. Allg. Chem. (in Ger) 163 (1972).
[40] A. M. Ginstling, B. I. Brounshtein, Concerning the diffusion kinetics of reactions in spherical particles, J. Appl. Chem. 23 (1950) 1327.
[41] D. Vanlensi, Cinetique de I'Oxydation de Spherules et de Poudres Matallics, Seances Acad. Sci. 203 (1936) 309.
[42] R. E. Carter, Kinetic modle for solid-state reactions, J. Chem. Phys. 34 (1961) 2010.
[43] 蕭富山,修正行統計燒結理論評估氧化鎂及氧化鋯添加氧化鋁燒結行為及顯微結構演進,國立成功大學材料科學及工程學系,博士論文 (2000)
[44] 汪建民,材料分析,中國材料科學學會 (1998)
[45] D. Jiles, Introduction to magnetism and magnetic materials, 2nd Ed., Taylor & Francis, London.
[46] 劉奇青,鐵—鎳—鎵合金材料的鐵磁共振與磁彈性質研究,國立交通大學電子物理所,博士論文 (2013).
[47] I. D. Brown, R. D. Shannon, Empirical bond strengthbond length curves for oxides, Acta Crystallogr. A29 (1973) 266282.
[48] A. Ertl, J. M. Hughes, F. Pertlik, F. F. Foit JR., S. E. Wright, F. Brandsträtter, B. Marler, Polyhedron distortions in tourmaline, Can. Mineral. 40 (2002) 153-162.
[49] H. Zhao, J. Zhou, Y. Bai, Z. Gui, and L. Li, Effect of Bi-substitution on the dielectric properties of polycrystalline yttrium iron garnet, J. Magn. Magn. Mater. 280 (2004) 208.
[50] J. J. Song, P. B. Klein, R. L. Wadsack, M. Selders, S. Mroczkowski, R. K. Chang, Raman-active phonons in aluminum, gallium, and iron garnets, J. Opt. Soc. Am. 63 (1973) 1135.
[51] Y. F. Chen, K. T. Wu, Y. D. Yao, C. H. Peng, K. L. You, W. S. Tse, The influence of Fe concentration on Y3Al5-xFexO12 garnets, Microelectron. Eng. 81 (2005) 329.
[52] S.R. Naik, A. V. Salker, Enhancement in the magnetic moment with Cr3+ doping and its effect on the magneto-structural properties of Ce0.1Y2.9Fe5O12, Phys. Chem. Chem. Phys. 14 (2012) 10032.
[53] L. L. Hench, J. K. West, Principles of electronic ceramics, John Wiley and Sons, New York, 1990.
[54] K. B. Xu, C. C. Wang, M. N. Zhang, G. J. Wang, Y. M. Cui, Polaronic relaxation in La0.8Bi0.2Fe0.7Mn0.3O3, Mater. Chem. Phys. 134 (2012) 499502.
[55] H. Zhao, J. Zhou, Y. Bai, Z. Gui, and L. Li, Effect of Bi-substitution on the dielectric properties of polycrystalline yttrium iron garnet, J. Magn. Magn. Mater. 280 (2004) 208.
[56] P. C. Tsai, X. Qi, Y. J. Siao, The effect of sintering temperature on the dielectruc behavior and magnetic property of ferromagnetic Tb3Fe5O12, IEEE Trans. Magn. 49 (2013) 4307-4310.
[57] Y. J. Siao, X. Qi, C. R. Lin, J. C. A. Huang, Dielectric relaxation and magnetic behavior of bismuth-substituted yttrium iron garnet, J. Appl. Phys. 109 (2011) 07A508.
[58] Y. J. Wu, Y. Gao, X. M. Chen, S. Y. Wu, Z. C. Xu, Dielectric relaxations in Tb0.91Yb1.38Bi0.71Fe5O12, Phys. Lett. A 373 (2009) 1089-1092.
[59] Y. J. Wu, C. Yu, X. M. Chen, J. Li, Effects of Al substitution on dielectric response and magnetic behavior of yttrium iron garnet ceramics, J. Am. Ceram. Soc., 95 (2012) 1671-1675.
[60] L. Sirdeshmukh, K. K. Kumar, S. B. Laxman, A. R. Krishna, G. Sathaiah, Dielectric properties and electrical conduction in yttrium iron garnet (YIG), Bull. Mater. Sci. 21 (1998) 219–226.
[61] A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London (1983).
[62] P. B. Macedo, C. T. Moynihan, R. Bose, The role of ionic diffusion in polarization in vitreous ionic conductors, Phys. Chem. Glasses 13 (1972) 171179.
[63] R. Gerhardt, Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity, J. Phys. Chem. Solids 55 (1994) 1491-1506.
[64] I. M. Hodge, M. D. Ingram, A. R. West, Impedance and modulus spectroscopy of polycrystalline solid electrolytes, J. Electroanal. Chem. 74 (1976) 125143.
[65] J. J. Liu, C. G. Duan, W. G. Yin, W. N. Mei, R. W. Smith, J. R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11, J. Chem. Phys. 119 (2003) 2812–2819.
[66] R. A. Mondal , B. S. Murty, V. R. K. Murthy, Maxwell-Wagner polarization in grain boundary segregated NiCuZn ferrite, Curr. Appl. Phys. 14 (2014) 17271733.
[67] S. Z. Lu, X. Qi, Magnetic and dielectric properties of nanostructured BiFeO3 prepared by sol–gel method, J. Am. Ceram. Soc. 97 (2014) 21852194.
[68] C. C. Wang, H. B. Lu, K. J. Jin, G. Z. Yang, Temperature dependent dielectric strength of Maxwell-Wagner type relaxation, Mod. Phys. Lett. B 22 (2008) 1297-1305.
[69] W. Cao, R. Gerhardt, Calculation of various relaxation times and conductivity for a single dielectric relaxation process, Solid State Ionics 42 (1990) 213221.
[70] R. L. Hurt, J. R. Macdonald, Distributed circuit elements in impedance spectroscopy: a unified treatment of conductive and dielectric systems, Solid State Ionics 20 (1986) 111-124.
[71] D. Cruickshank, 1–2 GHz dielectrics and ferrites: overview and perspectives, J. Eur. Ceram. Soc. 23 (2003) 2721–2726.
[72] C. Ang, Z. Yu, L. E. Cross, Oxygen vacancy related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3, Phys. Rev. B 62 (2000) 228-236.
[73] Y. Y. Liu, X. M. Chen, X. Q. Liu, L. Li, Giant dielectric response and relaxor behaviors induced by charge and defect ordering in Sr(Fe1/2Nb1/2)O3 ceramics, Appl. Phys. Lett. 90 (2007) 192905.
[74] F. Bloch, Zur Theorie des Ferromagnetismus, 61 (1930) 206.
[75] S. Gangopadhyay, G. C. Hadjipanayis, B. Dale, C. M. Sorensen, K. J. Klabunde, V. Papaefthymiou, A. Kostikas, Magnetic properties of ultrafine iron particles, Phys. Rev. B 45 (1992) 9778.
[76] M. Lahoubi, M. Guillot, A. Marchand, F. Tcheou, E. Roudault, Double umbrella structure in terbium iron garnet, IEEE Trans. Magn. 20 (1984) 1518.
[77] Y. J. Hong, J. S. Kum, I. B. Shim, C. S. Kim, Spin rotation at compensation point studies of Tb3Fe5O12 by Mössbauer spectroscopy, IEEE Trans. Magn. 40 (2004) 2808.
[78] F. Minghao, H. Juntong, H. Zhaohui, L. Yangai, J. Bin, P. Peng, Solid Phase Synthesis and Sintering Properties of Yttrium Iron Garnet, Key Eng. Mater. 368–372 (2008) 588.
[79] J. Su, X. Lu, C. Zhang, J. Zhang, H. Sun, C. Ju, Z. Wang, K. Min, F. Huang, J. Zhu, Study on dielectric and magnetic properties of Ho3Fe5O12 ceramics, Phys. B: Condens Matter. 407 (2012) 485–488.
[80] J. Su, X. Lu, J. Zhang, H. Sun, C. Zhang, Z. Jiang, et al., The effect of Fe2+ ions on dielectric and magnetic properties of Yb3Fe5O12 ceramics, J. Appl. Phys. 111 (2012) 014112.
[81] A. R. Denton, N. W. Ashcroft, Vegard's law, Phys. Rev. A 43 (1991) 3161.
[82] A. Goldman, Modern ferrite technology, 2nd ed., Springer, Pittsburgh, PA, 2006.
[83] E. J. J. Mallmann, A. S. B. Sombra, J. C. Goes, P. B. A. Fechine, Yttrium iron garnet: properties and applications review, Solid State Phenom. 202 (2013) 65-96.
[84] A. K. Zvezdin, V. A. Kotov, Modern magnetooptics and magnetooptical materials, Taylor & Francis Group, New York, 1997.
[85] J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann, S. N. Stitzer, Ferrite devices and materials, IEEE Trans. Microw. Theory Tech. 50 (2002) 721737.
[86] D. Cruickshank, 1–2 GHz dielectrics and ferrites: overview and perspectives, J. Eur. Ceram. Soc. 23 (2003) 2721–2726.
[87] Y. Yamasaki, Y. Kohara, Y. Tokura, Quantum magnetoelectric effect in iron garnet, Phys. Rev. B 80 (2009) 140412(R).
校內:2021-02-18公開