| 研究生: |
陳澤浩 Chen, Ze-Hao |
|---|---|
| 論文名稱: |
應用於積層製造之316L不鏽鋼粉末氣霧法製程及粉末特性研究 Production and Characteristic of Stainless Steel 316L Powder by Gas Atomization for Additive Manufacturing |
| 指導教授: |
王振源
Wang, Chen-Yuan 王覺寬 Wang, Muh-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 金屬粉末 、不鏽鋼粉末 、不鏽鋼316L 、氣體霧化法 、積層製造 |
| 外文關鍵詞: | Metal powder, Stainless steel 316L powder, Gas atomization, Metal additive manufacture |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬粉末的製造方法眾多,工業應用也相當廣泛,如粉末冶金、金屬射出成型以及金屬積層製造,其中以積層製造用金屬粉末的價值最高。目前世界工業大國均將積層製造列為國家重點發展項目,但其對於金屬粉末標準的要求較嚴格,如粉末平均粒徑、粒徑分佈、粉末球型度、粉末流動性以及含氧量等有許多限制。由近年研究顯示,以氣霧化法製程所生產的粉末,最適合生產積層製造用金屬粉末且能夠滿足其嚴格的粉末要求。
不鏽鋼系列合金,由於熔點高,因此在高溫使用下其強度仍相當好,且有可塑性、高韌性以及抗腐蝕等特性,是世界用量最大的金屬合金。本研究目的在建立一套高效率之氣霧化法製程技術,以不鏽鋼316L金屬粉末製程為研究主軸,探討霧化器設計及操作參數的影響。霧化器設計參數為改變突出長度L/L0 =1.0, 1.5, 2.0, 2.5四型導液管、霧化頂角α/α0=1.0, 1.3, 1.6, 1.9四型噴嘴、口徑d/d0=0.9, 1.0兩型導液管;操作參數為霧化氣體壓力Pg=5, 10, 15, 20, 25, 30 Bar等六種,其中L0、α0、d0分別為初使設計之參數值,定義為設計基準值。
噴霧特性研究結果顯示,隨導液管突出長度L增長及噴嘴霧化頂角α增加,將使抽吸壓力減小進而降低液體質量流率提高氣液質量比,使噴霧平均粒徑也隨之減小。另外金屬製程實驗結果顯示,較短突出長度L1導液管與較大的霧化頂角α3及α4兩型噴嘴,會有金屬熔湯回流凝固在氣流道出口破壞噴嘴的狀況,不適合於金屬粉末製程使用。
金屬製程實驗結果顯示,霧化器設計參數使用霧化頂角α/α0=1.3之噴嘴、突出長度L/L0 =2.5及口徑d/d0=1.0之導液管,在霧化氣體壓力Pg=30 Bar時,不鏽鋼316L粉末平均粒徑為43 μm、10-63 μm粉末得料率為65 %。並且為進一步降低平均粒徑及提高細粉得料率,將導液管口徑縮小為d/d0=0.9,所得粉末平均粒徑為35 μm、10-63 μm粉末得料率為76 %,已能達到積層製造用金屬粉末之高標準。
粉末特性分析結果顯示,粉末形狀為圓球狀且流動性佳,並利用金相觀察內部顯微結構顯示其結晶情況較原材料細微許多,接近微晶結構,使得粉末的維克氏硬度測量平均結果為296.0 HV,與原材料測得143HV結果相比大幅提升2.06倍。由以上結果可知本研究所開發之氣霧化法製程,優於傳統噴霧製程,成功建立一套高效率氣霧化法製程,滿足積層製造用金屬粉末的嚴格要求。
Method for producing metal powder is numerous, and industrial applications is quite extensive, especially, the metal powders for MAM (Metal Additive Manufacturing) has highest value. Nowadays, the major industrial countries center on additive manufacturing and consider it as a national development project. However, the requirements of metal powder are stringent in terms of mean particle size, particle size distribution, powder shape, oxygen content and powder flowability. Recent studies revealed that the gas atomization is the most suitable way to produce the metal powder for MAM. Stainless steel, it is widely used in industry, due to the high melting point, so its strength at high temperatures is still very good. The goal of this study was to design a high efficiency gas atomization technology for producing stainless steel powder for MAM process. The atomization performance and mechanisms of this atomizer would be presented in this study. Research method is through a atomizing experiment, the supersonic nozzle with different parameters, like gas atomization pressure, protrusion length of deliver tubes, tube diameter and nozzle apex angles. The size distributions of droplet size and metal powder were measured by INSITEC RT-Sizer and Coulter LS230 particle sizer, respectively. The results show that the particles size decrease with the increasing protrusion length and apex angle, because of aspiration pressure is decreased and leads to the liquid mass flow rate is also decreased. Consequently, the GLR (Gas-to-Liquid Mass Ratio) is enhanced. In the metal atomization results, when atomizer used protrusion length is L/L0=2.5, tube diameter is d/d0=1.0, apex angle is α/α0=1.3 and atomizing pressure is 30 Bar, results show that mean particle size (Dv50) is 43 μm, yield rate (powder size at 10-63 μm) is 65%, while the tube diameter reduce to d/d0=0.9, results show Dv50 reduce to 35 μm, yield rate is rised to 76%. The micrograph of the metal powder by the scanning electron microscopy (SEM) show that the particle shape is spherical and also show the fine microstructure in the surface morphology. It can be concluded that this process is useful to produce the stainless steel powder to meet the requirements in MAM processes.
[1] 母育峰,氣體霧化制取细金屬粉末的工藝優化研究,中南大學碩士學位論文,1997。
[2] 王蜀奇,陳文信,“金屬粉末市場應用專題研究”,工業技術研究院,1994。
[3] J. Beck, A. H. Lefebvre and T. Koblish, “Air Blast Atomization at Conditions of Low Air Velocity”, Paper No AIAA- 89- 0217, 1989.
[4] J. S. Thompson, “A Study of Process Variables in the Production of Aluminum Powder,” J. Jnst. Met. , Vol. 74, 1948.
[5] E. Klar, W. M. Shafer, “Powder Metallurgy for High Performance Application,” Syracuse University Press, pp. 57-68, 1971.
[6] J. F. Joyce, “Defence Metals Information Center Review,” Section in Powder Metallurgy, 1967.
[7] B. N. Putimstev, Poroshkovaya Met., No. 11, 1968
[8] O. S. Niciporenko, Y. I. Naida, “Heat Exchange Between Metal Particles and Gas in the Atomization Process,” Soviet Powder Metallurgy Metal Ceramic, Vol. 67, No. 7, pp. 509, 1968.
[9] A. Lawley, “Atomization: The Production of Metal Powders,” Metal Powder Industries Federation, pp. 56-78, 1992.
[10] N. J. Grant, “A Review of Various Atomization Processes,” In: R. Mehrabian, B. H. Kear, M. Cohen, eds. Rapid Solidification Processing: Principles and Technologies II. Batcon Rouge, LA: Clator’s Pub. Div., 1980. 273.
[11] R. Rutharde, “Novel Aspects for High Quality Metal Powders Equipment,” Powder Metal Int., Vol. 13, No. 4, pp. 175, 1981.
[12] A. Walz, A. Kurzarm, “Metal Powders and a Process for the Production,” US Patent, No. 4534917, 1985-12-29.
[13] I. E. Anderson, “Boost in Atomizer Pressure Shaves Powder-Particle Size,” Advanced Materials and Processes, Vol. 7, pp. 30, 1991.
[14] S. A. Miller, “Close-coupled Gas Atomization of Metal Alloy,” W. A. Kaysser, J. W. Huppman, Horizons of Powder Metallurgy, Freiberg Germany: Verlag Sehmidt GMBH, pp. 29-32, 1986.
[15] P. A. Tove, “Method and Device for Pulverizing and Decomposing Solid Material,” US Patent, No. 3067865, 1962-04-10.
[16] L’Estrade, R. Koos, “Properties of Gas Atomized Metal Powders,” In: W. A. Kaysser, J. W. Huppman, eds. Horizons of Powder Metallurgy. Freiberg, Germany: Verlag Schmidt GMBH, pp. 22, 1986.
[17] M. F. Riley, S. K. Sherman, “Oxygen Control During Atomization Using Laminar Barriers,” In: E. R. Andreotti, eds. Advances in Powder Metallurgy. Princeton, NJ: Metal Powder Industries Federation, 1990.
[18] W. G. Hopkins, “Close-coupled Gas Atomization Comes of Age,” Metal Powder Report, Vol. 45, No. 1, pp. 41-42, 1994.
[19] S. Ozbilen, A. Ünal, “Influence of Superheat On Particle Shape and Size of Gas atomized Copper Powders,” Powder Metal, Vol. 34, No. 1, pp. 53, 1991.
[20] G. Sehulz, Nanoval, “Process Offers Fine Powder Benefits,” Metal Powder Report, Vol. 11, No. 1, pp. 30-33, 1996.
[21] J. T. Strauss, “Hotter Gas Increases Atomization Efficiency,” Metal Powder Report, Vol. 4, No. 11, pp. 24-28, 1999.
[22] A. Alagheband, C. Brown, “UMT Promises Tight Control of Particle Size,” Metal Powder Report, Vol. 11, pp. 30-33, 1998.
[23] G. Schulz, “Taking the Pressure Out of Atomization,” Metal Powder Report, Vol. 23, No. 3, pp. 23-25, 2002.
[24] 陳剛,陳振華,嚴红革,袁武華,“一種新型的氣體霧化製粉方法”,中國有色金屬學報,Vol. 11,No. 2,pp. 33-36,2001。
[25] 吕洪,陳鼎,傅定發,龍小兵,陳剛,“一種新型的霧化方法”,中國粉體技術,Vol. 8,No. 4,pp. 6-8,2002。
[26] P. McGuinness, W. Drenckhan, D. Weaire, “The Optimal Tap: Three. Dimensional Nozzle Design,” Journal of Physices D: Applied Physices, Vol. 38, No. 4, pp. 3382-3386, 2005.
[27] 陳欣,“緊耦合氣霧化流場结構霧化機理研究”,中南大學碩士學位論文,2007。
[28] 郭屹賓,緊偶合霧化噴嘴的反應和細微粉末的製備研究,中南大學碩士學位論文,2009。
[29] I. E. Anderson, Figliola, S. Richard, “Atomizing Nozzle and Process,” US Patent. No. 5125574, 1992-6-1.
[30] Ayers, D. Jack, I. E. Anderson, “Method for Generating Fine Sprays of Molten Metal for Spray Coating and Powder Making,” US Patent, No. 4619845, 1986-10-28.
[31] J. Ting, R. Terpst, I. E. Anderson, “A Novel High Pressure Gas Atomizing Nozzle for Liquid Metal Atomization,” M. Capus, R. M. German, Advances in Powder Metallurgy &Particulate Materials-1996. New Jersey: Metal Powder Industries Federation, pp. 97-108, 1996.
[32] J. Ting, I. E. Anderson, L. Robert, “Atomizing Nozzle and Method,” US Patent, No. 6142382, 2000-11-7.
[33] L. Gerking, “Powder from Metal and Ceramic Melts by Laminar Gas Streams at Supersonic Speeds,” Powder Metallurgy International, Vol. 25, No. 2, pp. 59-65, 1993.
[34] M. Stobik, “Nanoval Atomizing-superior Flow Design for Fine Powder,” K. Bauckhage, V. Uhlenwinkel, U. Fritsching, Proceedings of International Conference on SDMA. Bremen Germany: Metal Powder Industries Federation, pp. 511-520, 2002.
[35] L. Gerking, “New Achievements with The Nanoval Process for Gas Atomization,” M. Joseph, German, M. Randall, Proceedings of 2000 Powder Metallurgy World Congress. New Jersey: Metal Powder Industries Federation, pp. 457-459, 2000.
[36] J. T. Strauss, “Hotter Gas Increases Atomization Efficiency,” Metal Powder Report, Vol. 11, No. 3, pp. 24-28, 1999.
[37] J. T. Strauss, S. A. Miller, “Effect of Gas Properties in Powder Yield Produced by Close-coupled Gas Atomization,” M. Capus, R. M. German, Advances in Powder Metallurgy & Particulate Materials-1997. Princeton: Metal Powder Industries Federation, pp. 45-52, 1997.
[38] J. T. Strauss, “Close-coupled Gas Atomization Using Elevated Temperature Gas,” M. Capus, R. M. German, Advances in Powder Metallurgy & Particulate Materials-1 999. New Jersey: Metal Powder Industries Federation, pp. 23-34, 1999.
[39] S. A. Miller, “Close-coupled Gas Atomization of Metal Alloy,” M. Joseph, German, M. Randall, Proceedings of 1986 Powder Metallurgy World Congress. New Jersey: Metal Powder Industries Federation, pp. 29-32, 1986.
[40] S. P. Mates, G. S. Settles, “High-speed Imaging of Liquid Atomization by Two Different Close-coupled Nozzles,” M. Capus, R. M. German, Advances in Powder Metallurgy & Particulate Materials-1997. Princeton: Metal Powder Industries Federation, pp. 5-10, 1997.
[41] H. J. Sung, T. K. Ha, S. Ahn, Y. W. Chang, “Powder Injection Molding of a 17-4 PH Stainless Steel and The Effect of Sintering Temperature on Its Microstructure and Mechanical Properties,” Journal of Materials Processing Technology, Vol. 130, No. 6, pp. 321-327, 2002.
[42] H. Liu, “Effect of Atomizer Geometry and Configuration on Gas Flow Field in Gas Atomization,” M. Capus,R. M. German, Advances in Powder Metallurgy & Particulate Materials-1997. Princeton: Metal Powder Industries Federation, pp. 5-10, 1997.
[43] P. I. Espona, U. Piomieli, “Numerical Simulation of The Gas Flow in Gas-Metal Atomizer,” M. Joseph, German, M. Randall, Proceedings of 1998 Powder Metallurgy World Congress. New Jersey: Metal Powder Industries Federation, pp. 1-11, 1998.
[44] J. Dunkely, “Water Bench Testing Boots Gas Atomizing,” Metal Powder Report, Vol. 1, No. 3, pp. 26-29, 1999.
[45] S. Ozblien, A. Ünal, T. Sheppard, “Influence of Liquid Metal Properties on Particle Size of Inert Gas Atomized Powders,” Powder Metallurgy, Vol. 35, No. 1, pp. 51-59, 1999.
[46] J. T. Strauss, S. A. Miller, “Effect of Melt Superheat on Powder Characteristics Produced by Close-coupled Gas Atomization,” M. Capus, R. M. German, Advances in Powder Metallurgy & Particulate Materials-1996. Princeton: Metal Powder Industries Federation, pp. 55-65, 1996.
[47] 賴冠良,“應用於積層製造之奧氏體合金粉末氣霧法製程研究”,國立成功大學航空太空工程研究所碩士論文,2015。
[48] 母育峰,“氣體霧化製取细金屬粉末的工藝優化研究”,中南大學,長沙,1997。
[49] N. Dombrowski, W. R. Johns, “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
[50] R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium(International) on Combustion, Rein-hold, New York, pp. 687-701, 1957.
[51] S. P. Mates, G. S. Settles, “High-speed Imaging of Liquid Atomization by Two Different Close-coupled Nozzles,” M. Capus, R. M. German, Advances in Powder Metallurgy & Particulate Materials-1997. Princeton: Metal Powder Industries Federation, pp. 5-10, 1997.
[52] 林偉凱,劉文海,梁孝祖,“積層製造用金屬粉末製程技術及設備發展與前瞻應用”,財團法人金屬工業研究發展中心,2014。
[53] 工業材料雜誌 335期,2014。
[54] 賴宏仁,曹申,工研院電子報,第10311 期,2014 。
[55] M. Blattmeier, J. Töpker, G. Witt, “Technologische reife von generativen herste-llungsverfahren für Endanwendungen im automobilbau”, RT e- Journal Forum fuer Rapid Technology, 2010.
[56] 王瑞澤,張冬雲,鹿堃,“提高快速成型技術中數據處理過程精度的研究綜述”,機械設計與製造,第215- 217頁,2010 。
[57] B. Liu, R. Wildman, C. Tuck, et al., “Investigation The Effect of Particle Size Distribution on Processing Parameter Optimisation is Selective Laser Melting Process,” International solid freeform fabrication symposium: an additive manufacturing conference, pp. 227-238, 2011.
[58] A. B. Spierings, N. Herres, G. Levy, “Influence of the Particle Size Distributionon Surface Quality and Mechanical Properties in AM Steel Parts,” Rapid Prototyping Journal, Vol. 17, No. 3, pp. 195-202, 2011.
[59] B. Zheng., Y. Lin., Y. Zhou., E. J. Lavernia, “Gas Atomization of Amorphous Aluminum Powder: Part II. Experimental Investigation. Metallurgical and Materials Transactions B”, 40(6), pp. 995- 1004, 2009.
[60] X. M. Zhao., International Journal of Minerals, Metallurgy and Materials Vol. 19, pp. 83, No. 1, 2012.
[61] R. Li, Y. Shi, Z Wang, L. Wang, J. Liu, & W. Jiang, “Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. ”, Applied surface science, 256(13), pp. 4350- 4356, 2010.
[62] J. Ting, W. Peretti, B. Eisen,” The effect of wake-closure phenomenon on gas atomization performance”, Materials Science and Engineering, pp. 110-121,2002
[63] 趙新明,徐駿,朱學新,張少明,“超音速氣霧化噴嘴中抽吸壓力變化規律的研究”,粉末冶金技術, Vol. 28, No. 1,2010
校內:2021-07-08公開