簡易檢索 / 詳目顯示

研究生: 鄭盟傑
Zheng, Meng-Jie
論文名稱: 鑄模與鑄件間之界面熱傳分析
The Analysis of Interfacial Heat Transfer Between Mold and Casting
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 83
中文關鍵詞: 界面熱傳係數熱傳分析砂模鑄造
外文關鍵詞: Heat-transfer study, Sand mold casting, Interfacial heat transfer coefficient
相關次數: 點閱:190下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在鑄造過程之熱傳模式分析中,砂模與金屬界面熱傳情形是一關鍵性的問題,若無法妥善地處理此界面條件,會直接影響分析的結果。由於模與鑄件間不是緊密接觸,在模與金屬界面之熱傳方析中,需要一界面熱傳係數h來估算金屬的界面熱束q。
      本文針對濕砂模鑄造實驗,使用純金屬鋁、鋁合金(A356)及錫鉛(Sn-20wt%Pb)合金作為鑄造材料,以圓柱與長方體作為鑄件模型,用熱電偶量測出於砂模與金屬界面附近之溫度對時間的關係圖,利用Beck逆運算法、總容量法及銅塊法三種不同的方法,來計算砂模與金屬界面之熱束與熱傳係數。
      金屬液凝固時,在不同位置的冷卻曲線都很類似,純鋁之冷卻曲線會停滯在凝固溫度一段時間,A356鋁合金及錫鉛合金則呈現初生相(或初晶)和共晶兩個凝固階段,並在初生相階段有復輝現象產生。模與金屬界面之熱束(q)和熱傳係數(h)隨著時間之變化趨勢很相似,A356鋁合金與錫鉛合金的q與h對時間之變化呈現兩個高峰,鋁金屬僅有一個高峰。Beck逆運算法、總容量法及銅塊法之比較,h的情況跟q相似,Beck逆運算法與總容量法較接近,銅塊法跟其他兩種方法相差較多。以計算方法而言,以銅塊法最容易,總容量法其次,Beck逆運算法需要繁複之迭代,最為困難。

      In the heat-transfer analysis of a casting process, how to deal with the heat-transfer condition at the mold/metal interface is a key problem. If the problem is not handled properly, it will directly affect the analysis result. Since the contact between mold and metal is not perfect, the heat-transfer analyzer needs a heat-transfer coefficient h to balance the heat flux q at the interface.
      In this paper, the experiment method of green-sand-mold casting is used and the casting materials are pure aluminum, A356 alloy and Sn-20Wt%Pb alloy. The casting geometry is cylindrical. Thermocouples are utilized to measure the temperatures near the mold/metal interface. The Beck inverse, a lump capacitance and copper-assisted measurement methods are used to calculate interfacial heat flux and heat-transfer coefficient.
      During the solidification of liquid metal, the cooling curves of different locations are similar. The cooling curve of pure aluminum would stay at the solidification temperature for a while. The curves of A356 and tin-lead alloys show two solidification stages of: one is the primary phase (or pro-eutectic) solidification, and the other is the eutectic one. The time-varying trends of interfacial heat flux and heat transfer coefficient are similar. In the curves of q (or h) versus time of A356 and tin-lead alloys have two peaks, corresponding with two solidification stages. However, the curve of pure aluminum only has one peak. The curves of q or h predicted by the Beck inverse method are similar to those of the lump capacitance method, but they are quite different from those of the copper-assisted measurement method. From the point of computing method, the copper-assisted method is the simplest way and the Beck inverse method is the most difficult one.

    摘要…………………………………………………………I Abstract……………………………………………………II 誌謝…………………………………………………………III 目錄…………………………………………………………IV 表目錄………………………………………………………VI 圖目錄………………………………………………………VII 符號說明……………………………………………………X 第一章 緒論……………………………………………1 第二章 理論與數值分析………………………………4 2-1 界面熱傳係數之分析………………………………4 2-2 Beck逆運算法………………………………………5 2-2-1 Beck逆運算的處理模式…………………………6 2-3 總容量法(Lump capacitance method)……………9 2-4 銅塊法………………………………………………9 2-5 潛熱效應之計算方法………………………………10 2-5-1 純金屬(Al)………………………………………10 2-5-2 鋁合金(A356)……………………………………13 2-5-3 錫鉛合金( Sn-20wt%Pb )………………………15 第三章 實驗設備與方法………………………………17 3-1 鑄造之實驗設備………………………………………17 3-2 鑄模之設計……………………………………………18 3-3 實驗方法與步驟………………………………………19 3-3-1 濕砂模鑄造實驗方法與步驟………………………19 3-3-2 量測鑄件與砂模溫度分佈的方法…………………20 3-3-3 合模與澆鑄…………………………………………21 第四章 結果與討論……………………………………22 4-1 實驗之溫度量測………………………………………22 4-2 金屬界面熱束之分析…………………………………24 4-2-1 Beck逆運算法………………………………………24 4-2-2 總容量法(Lump capacitance method)……………25 4-2-3 銅塊法………………………………………………26 4-3 模與金屬界面熱傳係數之分析………………………27 第五章 結論……………………………………………29 參考文獻……………………………………………………30 附錄A 性值表…………………………………………69 附錄B 溫度場的差分方程……………………………70 附錄C 史蒂芬問題……………………………………73 附錄D 錫鉛合金之潛熱式推導………………………81 表目錄 表4-1 表4-1不同幾何形狀凝固曲線匯整表…………33 表4-2 不同幾何形狀熱束-時間匯整表………………34 表4-3 不同幾何形狀熱傳係數-時間匯整表…………35 圖目錄 圖2-1 高溫金屬之熱量傳遞至鑄模示意圖……………36 圖2-2 Beck逆運算法每一次計算q值的時間範圍示意 圖……………………………………………………………36 圖2-3 Beck逆運算之解題流程圖………………………37 圖2-4 銅塊埋設位置圖…………………………………38 圖2-5 等效比熱與溫度關係圖…………………………38 圖2-6 等效比熱/熱焓與溫度關係圖……………………39 圖2-7 溫度與能量釋放關係圖:(a) case1;(b) case2;(c) case3;(d) case4;(e) case5;(f) case6;(g) case7;(h) case8;(i) case9……………………………43 圖2-8 溫度場無潛熱之數值解與解析解關係圖…………44 圖2-9 溫度場以等效比熱法處理潛熱之數值解與解析解關係圖…………………………………………………………44 圖2-10 溫度場以等效比熱-熱焓法處理潛熱之數值解與解析解關係……………………………………………………45 圖3-1 OMEGA TL-WELD點焊機……………………………46 圖3-2 氫氧焰氣焊機………………………………………46 圖3-3 混砂機………………………………………………47 圖3-4 Labotherm 熔解爐…………………………………47 圖3-5 Agilent-34970A溫度擷取系統……………………48 圖3-6 鑄模之澆口、冒口及流路系統設計圖……………48 圖3-7 橫向圓柱體之澆鑄系統設計圖……………………49 圖3-8 橫向圓柱體之澆鑄系統成型圖……………………49 圖3-9 橫向矩形體之澆鑄系統設計圖……………………50 圖3-10 橫向矩形體之澆鑄系統成型圖……………………50 圖4-1 橫向圓柱體(Al)溫度-時間關係圖 (a)前500秒 (b)前300秒………………………………………………………51 圖4-2 橫向矩形體(Al)溫度-時間關係圖 (a)前500秒 (b)前300秒………………………………………………………52 圖4-3 橫向圓柱體(A356鋁合金)溫度-時間關係圖(a)前700秒 (b)前350秒…………………………………………53 圖4-4 橫向矩形體(A356鋁合金)溫度-時間關係圖(a)前700秒 (b)前350秒…………………………………………54 圖4-5 橫向圓柱體(Sn-20wt%Pb alloy)溫度-時間關係圖: (a)前1000秒 (b)前600秒……………………………55 圖4-6 橫向矩形體(Sn-20wt%Pb alloy)溫度-時間關係圖: (a)前1000秒 (b)前600秒……………………………56 圖4-7 橫向圓柱體(Al)溫度-時間關係圖(a)前1000秒(b)前300秒………………………………………………………57 圖4-8 Beck逆運算法之驗證測試:(a) q = constant,(b) q  constant…………………………………………58 圖4-9 鋁金屬之橫向圓柱體的熱束-時間關係圖:Beck逆運算法、總容量法與銅塊法之比較………………………59 圖4-10 鋁金屬之橫向矩形體的熱束-時間關係圖:Beck逆運算法與總容量法之比較…………………………………59 圖4-11 A356鋁合金之橫向圓柱體的熱束-時間關係圖:Beck逆運算法與總容量法之比較…………………………60 圖4-12 A356鋁合金之橫向矩形體的熱束-時間關係圖:Beck逆運算法與總容量法之比較…………………………60 圖4-13 Sn-20wt%Pb合金之橫向圓柱體的熱束-時間關係圖:Beck逆運算法與總容量法之比較……………………61 圖4-14 Sn-20wt%Pb合金之橫向矩形體的熱束-時間關係圖:Beck逆運算法與總容量法之比較……………………61 圖4-15 使用Beck逆運算法,鋁橫向圓柱體之熱束-時間關係圖: 等效比熱法和等效比熱-熱焓法之比較…………62 圖4-16 橫向圓柱體(Al) 熱傳係數-時間關係圖:Beck逆運算法…………………………………………………………62 圖4-17 橫向圓柱體(Al) 熱傳係數-時間關係圖:總容量法……………………………………………………………63 圖4-18 橫向矩形體(Al) 熱傳係數-時間關係圖:Beck逆運算法…………………………………………………………63 圖4-19 橫向矩形體(Al) 熱傳係數-時間關係圖:總容量法……………………………………………………………64 圖4-20 橫向圓柱體(A356鋁合金)熱傳係數-時間關係圖:Beck逆運算法………………………………………………64 圖4-21 橫向圓柱體(A356鋁合金)熱傳係數-時間關係圖:總容量法……………………………………………………65 圖4-22 橫向矩形體(A356鋁合金)熱傳係數-時間關係圖:Beck逆運算法………………………………………………65 圖4-23 橫向矩形體(A356鋁合金)熱傳係數-時間關係圖:總容量法……………………………………………………66 圖4-24 橫向圓柱體(Sn-20wt%Pb alloy)熱傳係數-時間關係圖:Beck逆運算法………………………………………66 圖4-25 橫向圓柱體(Sn-20wt%Pb alloy)熱傳係數-時間關係圖:總容量法……………………………………………67 圖4-26 橫向矩形體(Sn-20wt%Pb alloy)熱傳係數-時間關係圖:Beck逆運算法………………………………………67 圖4-27 橫向矩形體(Sn-20wt%Pb alloy)熱傳係數-時間關係圖:總容量法……………………………………………68 圖4-28 鋁金屬之橫向圓柱體的h2-時間關係圖:Beck逆運算法、總容量法與銅塊法之比較…………………………68

    Ho,S.and Pehlke, R. D., “Metal-Mold Interfacial Heat Transfer,”Metallurgical Transacton B, Vol. 16B, pp. 585-594 (1985).

    Beck J. V., “Calculation of Surface Heat Flux from an Integral Temperature History,” ASME J. Heat Transfer, 62-HT-46 (1962).

    Beck, J.V., "Surface Heat Flux Determination Using an Integral Method," Nucl. Eng. Des., Vol. 7, pp. 170-178 (1968).

    Beck, J. V. and Wolf, H., “The Non-lineat Inverse Heat Conduction Problem.” ASME J. Heat Transfer, No. 65-HT-40 (1965).

    Beck, J.V., "Nonlinear Estimation Applied to the Nonlinear Inverse Heat
    Chen, H.T. and Lin, J.Y., “Hybrid Laplace Transform Technique for Nonlinear Transient Problems,” Int. J. Heat Transfer, Vol. 34, pp. 1301-1308 (1991).

    Beck, J.V., Litkouhi, B., and St. Clair, C.R., "Efficient Sequential Solution of Nonlinear Inverse Heat Conduction Problem," Numerical Heat Transfer, Vol.5, pp. 275-286 (1982).

    Bass, B.R., "Application of the Finite Element Method to the Nonlinear Inverse Heat Conduction Problem Using Beck's Second Method," ASME Journal of Engineering for Industry, Vol. 102, pp. 168-176 (1980)

    Chiesa, F., “Measurement of the Thermal Conductionce at the Mold/Metal Interface of Permanent Molds,” AFS Trans., Vol. 98, pp. 193-200 (1990).

    Capacity,” Int. J. Heat Mass Transfer, Vol. 38, No. 18, pp. 3433-3441 (1995).

    Chen, H.T. and Lin, J.Y., “Application of the Hybrid Laplace Transform to Nonlinear Transient Problems,” Appl. Math. Modelling, Vol.15, pp. 144-151 (1991).

    Chen, H.T. and Chang, S.M., “Application of the Hybrid Method to Inverse Heat Conduction Problems,” Int. J. Heat Mass Transfer, Vol. 33, pp. 621-628 (1990).

    D’Souza N., “Numerical Solution of One-dimensional Inverse Transient Heat Conduction by Finite Difference Method,” ASME J. Heat Transfer, No. 75-WA/HT-81 (1975).

    Fidelle T. P. and Zinsemeister, G. E., “A Semi-discrete Approximate Solution of The Inverse Problem of Transient Heat Conduction,” ASME J. Heat Transfer, No. 68-WA/HT-26 (1968).

    Hou, T. X. and Pehlke, R. D., “Determination of Mold-Metal Interfical Heat Transfer and Simulation of Solidification of Aluminum-13% Silicon Cast,”AFS Trans.,Vol 94, pp. 129-136 (1986).

    Hwang, J. C. and Chuang, H. T., “Measurement of Heat Transfer Coefficient at Metal/Mold interface during Casting,” 鑄工期刊, Vol. 20,No.2,pp. 9-15 (1994).

    Huang, C.H. and Yan J.Y., “An Inverse Problem in Simultaneously
    Measuring Temperature-Dependent Thermal Conductivity and Heat

    Krutz, G. W., Schoenhals, R. J. and Hore, P. S., “Application of The Finite-Element Method to The Inverse Heat Conduction Problem,” Num. Heat Transfer, Vol. 1, pp. 489-498 (1978).

    Stolz, G. Tr., “Numerical Solution to An Inverse Problem of Heat Condition for Simple Shapes”, ASME Journal of Heat Transfer, Vol. 82, pp. 20-26, Feb. (1960).

    Sparrow E. M., Haji-Sheikh, A. and Lundgren, T. S., “The Inverse Problem in Transient Heat Conduction,” J. Appl. Mech., vol. 86e, pp. 369-375 (1964).
    Conduction Problem," International Journal of Heat and Mass Transfer, Vol. 13, pp. 703-716 (1970).

    Tseng A., Chen, T. C., and Zhao, F. Z., “Direct Sensitivity Coefficient Method for Solving Two-Dimensional Inverse Heat Conduction Problems by finite-elementScheme, “Num.Heat Transfer, Part B, Vol.27, pp291-307 (1995).

    Zeng, X. C., Chiang, R. D. and Chen, T.S., “Analysis of Heat Transfer at Metal-Sand Mold Boundaries and Computer Simulation of Solidfication of a Gray Iron Casting,”AFS Trans.,Vol. 93, pp.275-282 (1985).

    李國川, “鑄模與鑄件間之界面熱傳分析,” 國立成功大學工科所碩士論文 (2001)。

    林文和,邱傳聖, “鑄造學,”高立圖書有限公司。pp.75-89.

    林立勝, “凝固熱性質之估算,”國立成功大學工科所碩士論文 (2000)

    張文忠, “濕砂模鑄造之凝固分析,”國立中央大學機械所碩士論文 (1996)。

    廖茂奇, “濕砂模鑄造之熱傳分析,”國立成功大學工科所碩士論文 (1996)。

    孫憲琪, “濕砂模與鑄件間之熱傳分析,”國立成功大學工科所碩士論文 (1997)。

    紀欽仁, “逆向熱傳方法之材料熱性質預測,”國立成功大學工科所碩士論文 (1998)。

    郭孟遠, “材料凝固熱性質之估算,”國立成功大學工科所碩士論文 (1999)。

    黃俊誠, “A356鋁合金鑄造過程中界面熱傳係數的量研究,”國立成功大學材料所碩士論文 (1994)。

    黃南順, “金屬鑄件與砂模間界面熱傳係數分析,” 國立成功大學工科所碩士論文 (2003)。

    黃新春, “鑄造學,”文京圖書有限公司。pp.79-121.

    廖尹鐸, “金屬鑄件與砂模間界面熱傳係數分析,” 國立成功大學工科所碩士論文 (2002)。

    鍾尚浩,“鑄造灌模及凝固解析模式之改良及其相關實驗技術之研究發展”,博士論文,國立成功大學 (1992)。

    下載圖示 校內:立即公開
    校外:2004-08-30公開
    QR CODE