簡易檢索 / 詳目顯示

研究生: 譚中雄
Tam, Chung-Hung
論文名稱: 以真空燒結與熱壓及熱均壓製備Cr-Si靶材及其特性之研究
The Research of Manufacturing and Characters of the Cr-Si Targets by Vacuum Sintering, Hot Pressing and Hot Isostatic Pressing
指導教授: 李世欽
Lee, Shih-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 137
中文關鍵詞: 熱壓孔隙率熱均壓真空燒結靶材Cr-Si
外文關鍵詞: Porosity, Targets, Chromium silicide, Vacuum Sintering, Hot Pressing, Hot Isostatic Pressing
相關次數: 點閱:127下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高溫金屬矽化物擁有許多良好的物理及化學性質,如高熔點、高抗氧化性、高強度與抗高溫潛變性。而在電子元件的應用上,高溫金屬矽化物可降低界面接觸電阻與閘極電阻,進而提升整個元件的驅動電流與電路操作速度,降低反應時間。其中Cr-Si在薄膜電阻上被廣泛使用,也因此其靶材的製作亦變得更為重要。
    由於傳統鑄造冶金(Ingot Metallurgy, IM)的限制,不能針對熔點差異過大的元素進行鑄造。且鑄錠在緩慢的凝固後,會有成份偏析、氧化、多孔性、及微結構不均勻等缺陷出現,而後續的熱處理及熱加工雖可改善這些現象,但卻無法完全消除;如以粉末冶金則可得到高密度、細密的晶粒尺寸、均勻的微結構及等方向性之等優良的機械性質。
    本研究利用熱壓(HP)、熱均壓(HIP)及真空燒結(Vacuum Sintering)等三種方法製作Cr-Si靶材,其化學組成分別為Cr35-Si65 (Cr-65 mass%Si) 與 Cr50-Si50 (Cr-50mass%Si),並藉進行一系列的測試以探討不同粉末冶金法對其特性之影響。
    由實驗結果顯示,以封罐(Canning)先行製作生坯再以熱均壓製作的Cr-Si靶材,其性質遠比其他方法所製作者來得卓越許多。而且在工業生產上,亦可進行大量製造。

    Many silicides of refractory metal offer desirable properties for physical and chemical properties such as high melting point, good oxidation resistance, high strength, and excellent creep resistance at elevated temperatures. For sputtering the silicides as thin films, they are usually made by targets.

    Some target material can be made by casting, but the refractory materials such as Cr-Si alloy used for target material can not be fabricated by casting for the chemical composition segregation of the casting structures.

    The Cr-Si target materials with chemical composition Cr35-Si65 (Cr-65mass%Si) and Cr50-Si50 (Cr-50mass%Si) provided by vacuum sintering, hot pressing (HP) and Hot Isostatic Pressing (HIP) to produce the targets. And taking a series of testing to discuss the difference among the powder metallurgy methods.

    The experimental results show that the least porosity and the purest targets are made by the canning-HIP method. They are better than the ones made by vacuum sintering, HP, and HP-HIP.

    摘 要 I Abstract II 誌 謝 III 總 目 錄 V 圖 目 錄 X 表 目 錄 XVI 第一章 前 言 1 第二章 文 獻 回 顧 3 2.1 金屬陶瓷 3 2.2 金屬矽化物 4 2.2.1金屬矽化物製程之發展 4 2.2.2 金屬矽化物的優點 7 2.2.3 金屬矽化物的缺點與改善 8 2.2.4 金屬矽化物的生成機制 8 2.2.5金屬矽化物薄膜的形成及特性應用 10 2.3 靶材 12 2.3.1靶材製作方式 12 2.3.1.1.熔煉鑄造法 12 2.3.1.2 粉末冶金製程 14 2.3.2 常見靶材缺陷 16 2.4 燒結基本原理 18 2.4.1 燒結驅動力(Sintering Driving Force) 19 2.4.2 燒結應力(Sintering Stress) 21 2.4.3 燒結機制 22 2.4.3.1 固相燒結機制 24 2.4.3.2 液相燒結機制 27 2.4.4 影響燒結之因素 28 2.4.5 真空燒結法 32 2.4.6 真空燒結設備 34 2.5 熱壓 35 2.5.1 熱壓原理 35 2.5.2熱壓設備 36 2.6 熱均壓 37 2.6.1熱均壓原理 37 2.6.2 熱均壓設備 38 2.6.3熱均壓影響因素 41 第三章 實驗步驟 44 3.1 真空燒結 46 3.1.1 粉末球磨混合 46 3.1.2 油壓預成型 47 3.1.3 冷均壓(Cold isostatic pressing) 47 3.1.4 真空燒結 49 3.2 熱壓—熱均壓 50 3.2.1 熱壓 50 3.2.2 熱均壓 51 3.3 封罐-熱均壓 52 3.4 粉末粒徑分析 54 3.5 XRD結晶結構分析 56 3.6孔隙率量測 57 3.6.1 阿基米德法 57 3.6.2水銀測孔法 59 3.7 微量雜質元素分析 60 3.8 SEM表面觀察 61 3.9 TEM結構觀察 62 3.9.1聚焦離子束 FIB 62 第四章 結果與討論 64 4.1 球磨混合前後Cr-Si之粉末形貌與粒徑分佈 64 4.2 Cr-Si靶材經真空燒結後之變化 69 4.2.1 初步真空燒結(1200~1400oC) 69 4.2.1.1 初步真空燒結前後Cr-Si坯體結晶結構之變化 69 4.2.1.2 經初步真空燒結後之Cr-Si坯體外觀變化 71 4.2.1.3 初步真空燒結前後Cr-Si坯體孔隙率之變化 73 4.2.2 Cr-Si坯體真空燒結溫度與孔隙率關係之進階探討(Cr35-Si65 : 1300~1340oC,Cr50-Si50: 1400~1420oC) 75 4.2.3 經真空燒結後Cr-Si坯體之顯微結構分析 76 4.2.3.1 Cr-Si經初步真空燒結(1200~1400oC)後之SEM觀察 77 4.2.3.2 Cr35-Si65經進階燒結(1320~1350oC)後之SEM觀察 80 4.2.3.3 Cr50-Si50經進階燒結(1380~1420oC)後之SEM觀察 83 4.2.4 Cr-Si靶材經真空燒結後其變化之結論 86 4.3 Cr-Si靶材經熱壓-熱均壓後之變化 87 4.3.1 Cr-Si靶材熱均壓前後之結晶結構 87 4.3.2 Cr-Si靶材熱均壓前後之孔隙率與密度 90 4.3.2.1 Cr-Si靶材熱均壓前後之開放性孔隙率 90 4.3.2.2 Cr-Si靶材熱均壓前後其開放性孔隙之大小分佈 94 4.3.2.3 Cr-Si靶材熱均壓前後其密度之變化 96 4.3.2.4 Cr-Si靶材熱均壓前後之封閉性孔隙率 98 4.3.3 Cr-Si靶材熱均壓前後之氮氧濃度變化 102 4.3.4 Cr-Si靶材熱均壓前後之顯微結構觀察 105 4.3.4.1 Cr-Si靶材熱均壓前後之SEM觀察 105 4.3.4.2 Cr-Si靶材熱均壓前後其SEI / BEI之觀察比較 108 4.3.5 Cr-Si靶材熱均壓前後之TEM觀察 111 4.3.6 Cr-Si靶材經熱壓-熱均壓後之結論 114 4.4 以封罐-熱均壓製作Cr-Si靶材 115 4.4.1 Cr-Si靶材於封罐-熱均壓前後之外觀與裁切靶材 115 4.4.2以封罐-熱均壓製作Cr-Si靶材其孔隙率變化之比較 119 4.4.3以封罐-熱均壓製作之Cr-Si靶材其氮氧濃度變化之比較 120 4.4.4 以封罐-熱均壓製作Cr-Si靶材其顯微結構之觀察 121 4.4.5 以封罐-熱均壓製作Cr-Si靶材之結論 123 第五章 總結論 124 參 考 文 獻 125 相 關 著 作 134

    1. A. V. Krivosheeva, V. L. Shaposhnikov, V. E. Borisenko, “Electronic structure of stressed CrSi2”, Materials Science and Engineering B, Vol. 101, pp.309-312, (2003)
    2. Chong-Geol Kim, “Electrical properties of CrSix, Cr/CrSix/Cr/CrSix, and CrSix/Si/ CrSix/Si sputtered on alumina plates”, Thin Solid Films, Vol. 479, pp.182-187, (2005)
    3. V. M. Chad, M. I. S. T. Faria, G. C. Coelho, C. A. Nunes, P. A. Suzuki, “Microstructural characterization of as-cast Cr-Si alloy”, Material Characterization, (2006)
    4. T. Garvare, “Proceedings of the International Conference on Hot Isostatic Pressing”, The Swedish Institute of Production Engineering Research-Lulea/15-17 June, (1987)
    5. Koizumi, Mitsue, “Hot Isostaric Pressing Theory and Applications”, International Conference on Hot Isostatic Pressing, Applied Science, (1992)
    6. 林天財,“熱均壓”,金屬工業33卷5期,pp.94-95,1999年9月
    7. 林江財, “耐高溫金屬的粉末冶金與應用”,金工第17卷第4期, pp.60-65,1983年
    8. 吳欣顯、酈唯誠、王令儀、黃信二, “ITO及Cr靶材成型技術研究” ,粉末冶金會刊第27卷第4期,,pp.239-244,2002年
    9. 王東釧、王威翔,“光碟靶材之研究”,機械工業雜誌,中華民國88年元月號,pp.158-169,1999年
    10. 黃信二、顧均豪、林於隆、葉建宏、顏伯甫、鄭尊仁“相變化光碟及硫屬記錄合金靶材之發展與應用”,粉末冶金會刊第28卷第1期, pp.28-38,2003年
    11. L. P. Martin, D. Nagle and M. Rosen, “Effect of particle size distribution upon specific surface area and ultrasonic velocity in sintered ceramic powders ”, Material Science, vol.246, pp.151-160, (1998)
    12. 張世賢, “Inconel 718與713LC 超合金熱均壓製程參數及特性研究”, 國立成功大學材料科學及工程學系博士論文,2006年6月
    13. 李世欽、張世賢、何信弘,”熱均壓技術之應用”,鑄造科技第177期,pp.3-9,20004年6月
    14. I. E. Campbell, “High-Temperature Technology”, John Wiley & Sons, New York, (1956)
    15. 楊勛烈、曹勇家、侯載欽,“金屬陶瓷”, 中國大百科全書,1993年(簡體版),2001年(繁體版)
    16. FactSage Database Documentation, (2006)
    17. 荒木善夫,加藤雅,大杉功,小島勉,桑折仁,田一路,“技術CrSi2-CoSi 接合素子作製”, TEC2003 論文集,pp.128-129,(2003)
    18. S. M. Sze, “Physics of Semiconductor Devices”, pp.469 (1981)
    19. S. M. Sze, “Semiconductor Devices Physics and Technology”, AT & T Bell Lab, Inc. (1985)
    20. J. R. Brews et al., IEEE Electron Devices Letter, EDL-1, 2, (1980)
    21. D. M. Brown, W. E. Engeler, M. Garfinkel, and P. V. Gray, “Self-aligned molybdenum gate MOSFET’s,” J. Electrochem. Soc., Vol.115, p.874, (1968)
    22. P. Shah, “Refractory metal gate process for VLSI applications”, IEEE Trans. Electron Devices, vol.26, p.631, (1979)
    23. K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R.Hunter, and A. F. Tash, Jr., “Composite TiSi2/n+ poly-Si low resistivity gate electrode and interconnect for VLSI device technology,” IEEE Trans. Electron Device, Vol.29, pp.547, (1982)
    24. S. Wang, “Characteristics of CrSi2 and Cr2Ni/Si synthesis in MEVVA ion source implantation and post-annealing processes”, Applied Surface Science, Vol.153, pp.108-113, (2000)
    25. N. G. Galkin, A. V. Konchenko, D. L. Goroshko, A. M. Maslov, S. V. Vavanova and S. I. Kosikov, “Electronic structure, conductivity and carrier mobility in very thin epitaxial CrSi(111)/ layers with Si(111) LEED pattern”, Applied Surface Science, Vol.166, pp.113-118, (2000)
    26. H. Bei, E.P. George and G.M. Pharr, “Effects of composition on lamellar microstructures of near-eutectic Cr–Cr3Si alloys”, Intermetallics, Vol.11, pp.283-289, (2003)
    27. K. Mirouh, A. Bouabellou, R. Halimi, A. Mosser and G. Ehret,” Microstructural study of annealed Cr/Si system using cross-sectional TEM combined with nano-analysis”, Materials Science and Engineering, Vol. 102, pp.80-83, (2003)
    28. T. Paul Chow, Andrew and J. Steckl, “Transactions on Electron Devices” IEEE Trans. Electron Devices, ED-30, pp.1480, (1983)
    29. E. G. Colgan, B. Y. Tsaur and J. W. Mayer “Phase formation in Cr-Si thin-film interactions” Applied Physics Letters, Vol. 37, Issue 10, pp. 938-940, (1980)
    30. S. R. Wilson, “Handbook of Multilevel Metallization for Integrated Circuits", Noyes Publications, New Jersey, (1993)
    31. 莊達人,“VLSI製造技術“, 高立圖書, (1994)
    32. T. Morimoto, T. Ohguro, S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, H. Iwai, “Self- aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI,” IEEE Transactions on Electron Devices, Vol. 42, pp. 915, (1995)
    33. K. C. Sawaswat and F. Mohammadi, “Effect of Scaling of Interconnections on the Time Delay of VLSI Circuits,” IEEE Trans. Electron Devices, Vol. 29, No. 4, pp. 645, (1982)
    34. D. B. Scott, W. R. Hunter and H. Shichijo, “A Transmission Line Model for Silicided Diffusions: Impact on the Performance of VLSI Circuits,” IEEE Trans. Electron Devices, vol. 29, no. 4, pp.651, (1982)
    35. K. Sato, T. Nagata, M. Watanabe and H. Nakayama, “Failure mechanism of chromium-silicon-oxide resistive films stressed by electric pulse loading”, Materials Science, Vol. 28, No.11, pp.2995-2961, (1982)
    36. K. H. Bather, G. Zies, R. Voigtmann and H. Schreiber, “Effect of V−O barriers in Cr−Si−O/V−O/Al thin film system”, Thin Solid Films, Vol. 177, pp. 315-332, (1989)
    37. K. W. Robert, “Silicon-chromium thin-film resistor reliability”, Thin Solid Films, Vol. 16, pp.237~247, (1973)
    38. W. Brucker, H. Griemann, H. Schreiber, H. Vinzelberg and A. Heinrich, “Degradation of Si(Cr,W)-O resistive films”, Thin Solid Films, Vol. 214, No.1, pp.84-91, (1992)
    39. A. Heinrich, J. Schumann, H. Vinzelberg, U. Brustel and C. Gladun, “Nanodispeese CrSi(O,N) thin films-conductivity, thermopower and application”, Thin Solid Films, Vol. 223, No. 2, pp.311-19, (1993)
    40. A. D. Katnani, L. J. Matienzo and F. Emmi, “Surface oxidation effects on the electrical resistance of cermet thin films”, Thin Solid Films, Vol.214, No.1, pp.265-274, (1991)
    41. 黃信二、楊榮中、陳家驊、葉建宏,“光電粉末冶金靶材材料及製程技術”,粉末冶金會刊,第28卷第3期,pp.163-171,2003年
    42. 吳欣顯、陳金多、趙勤孝、黃信二、吳智原, “相變化光碟之濺鍍用記錄層靶材製作”,粉末冶金會刊,第26卷第3期,pp.193-197,2001年
    43. 譚中雄、李世欽、張世賢、黃信二、何信弘,“熱均壓處理對Cr-Si靶材影響之研究”,金屬熱處理第87期,pp.7-14,2005年12月
    44. 張世賢、譚中雄、李世欽、黃信二、何信弘、薄慧雲,“Cr-Si靶材熱均壓製程特性及微結構之探討”,粉末冶金會刊,第31卷第2期,pp.90-95,2006年
    45. 譚中雄、張世賢、李世欽、黃信二、何信弘、薄慧雲,“熱均壓溫度對Cr-Si靶材之影響”,粉末冶金會刊,第31卷第2期, pp.82-89,2006年
    46. 光洋應用材料股份有限公司
    47. G. C. Kuczynski, “Self-Diffusion in Sintering of Metallic Particles”, Metals Trans., pp. 169-178, (Feb. 1949)
    48. Randall M. German, Garry L. Messing, Robert G. Cornwall, (1996)
    49. 汪建民,材料分析,中國材料科學學會,1998年
    50. B. J. Skrifvars, M. Hupa, R. Backman and M. Hiltunen, “Sintering Mechanisms of FBC Ashes”, Fuel, Vol. 73, No. 2, pp. 171-176, (1994)
    51. 徐仁輝,粉末冶金概論,新文京開發出版有限公司,2002年
    52. 黃坤祥,粉末冶金學,中華民國粉末冶金協會,2003年
    53. S-J L.Kang, W. A. Kaysser, G. Petzow and D. N. Yoon, “Liquid Phase Sintering of Mo-Ni Alloys for Elimination of Isolated Pores” , Modern Developments in Powder Metallurgy, Vol. 15, pp. 477-488, (1985)
    54. T. Kawaguchi and K. Kuriyama, “Relationship Between the Fine Ratio and Particle Size of Sintered Products in a Sinter Cake Sizing Process”, Sumitomo Metals (Japan), Vol. 45, No. 1, pp. 6-15, (Feb. 1993)
    55. C. Scott Nordahl and Gary L. Messing, “Transformation and Densification of Nanocrystalline θ-Alumina during Sinter Forging”, Journal of the American Ceramic Society, Vol. 79, pp. 3149-3154, (1996)
    56. M. Erol, U. Demirler, S. Kkbayrak, A. Ersoy-Meriboyu and M. L. veog˘lu, “Characterization Investigations of Glass-Ceramics Developed from Seyitmer Thermal Power Plant Fly Ash”, Journal of the European Ceramic Society, Vol. 23, pp. 757-763, (2003)
    57. J. G. Yoo and Y. M. Jo, “Finding the Optimum Binder for Fly Ash Pelletization”, Fuel Processing Technology, Vol. 81, pp. 173-186, (2003)
    58. Yasunori Narizuka, Syoozi Ikeda, Akira Yabushita, Masakazu Ishino and Junichi Kishida, “Thin film resistor and wiring board using the same”, Hitachi Co. Ltd., U.S. Patent, (1993)
    59. 劉傳習、解子章、李月珠, 粉末冶金成形,中國大百科全書,1993年(簡體版),2001年(繁體版)
    60. Masao Tokita, “Recent Developments and Industrial Applications of Advanced Spark Plasma Sintering (SPS) Technology”, SPS SYNTEX INC., R&D Center, Japan (Sumitomo Coal Mining Company Ltd)
    61. 國立台灣大學材料科學及工程學系綜合高溫實驗室(顧鈞豪)
    62. Flow Autoclave System, Inc. ”Hot Isostatic Pressing Applications”
    63. 唐自標、梁誠、曾博義、張世賢, “以熱均壓處理強化添加TiC微粉之高釩工具鋼研究”, 粉末冶金會刊,第29卷第2期, pp. 73-80, 2004年
    64. 梁誠、唐自標、曾博義、張世賢, “均壓輔助燒結高釩工具鋼添加TiC微粉之研究”, 粉末冶金會刊,第29卷第3期, pp. 156-164, 2004年
    65. Materials Handbook Ninth Edition Volume 7 Powder Metallurgy, “Hot Isostatic Pressing of Metal Powders”, American Society for Metals, pp.419- 443 (1984)
    66. C. Barre, “Hot Isostatic Pressing Saving Time And Money”, The International Journal of Powder Metallurgy, Vol.35, No3, pp.51-52, (1999)
    67. F. Zimmerman, C. Bergman and J. Westerlund, “Cost-Effective Hiping” The International Journal of Powder Metallurgy, Vol.35, No3, pp.31-35, (1999)
    68. M. Naka, M. Maeda, T. Shibayanagi, H. Yuan and H. Mori, “Formation and properties of Cr-Si sputtered alloys”, Vacuum, Vol.65, pp.503-507, (2002)
    69. 馮慶芬,“粉末冶金學”,新文京開發出版有限公司,2002年
    70. 楊怡芳,“真空燒結溫度對Cr-Si合金微結構與機械性質影響之研究”,國立成功大學材料科學及工程學系碩士論文,2007年7月
    71. 瑞鋼貿易股份有限公司
    72. Particle Size Analyzer - Mastersizer 2000 - Malvern.com
    73. E. L. Weiss and H. N. Frock, “Rapid Analysis of Particle Size Distributions by Laser Light Scattering” Powder Technology, Vol. 14, pp. 287-293, (1976)
    74. ASTM C20-00 (2005)
    75. ASTM C373-88 (2006)
    76. “Determination of Density of Compacted or Sintered Powder Metallurgy Products”, MPIF Standard 42 ed., MPIF, Princeton, N. J., U.S.A., (2003)
    77. 國立台灣大學材料科學及工程學系粉末冶金實驗室(黃坤祥)
    78. 國立成功大學資源工程學系綜合實驗室
    79. Washburn’s Eq.
    80. 國立中興大學貴重儀器中心
    81. 國立成功大學貴儀中心環境掃瞄式電子顯微鏡
    82. 國立中山大學共用儀器中心(高屏地區奈米核心設施)
    83. Shohei Nakahara, “Recent development in a TEM specimen preparation technique using FIB for semiconductor devices”, Surface and Coatings Technology, Vol. 169-170, pp.721-727, 2003
    84. J. Yu, J. Liu, J. Zhang and J. Wu, “TEM investigation of FIB induced damages in preparation of metal material TEM specimens by FIB”, Materials Letters, Vol.60, pp.206-209, (2006)
    85. TECNAI F20 S-Twin, FEI Company
    86. A. Bose, B. H. Rabin and R. M. German, “Reaction Sintering Nickel- Aluminum to Near Full Density”, Powder Metallurgy, Vol.20, pp.25-30, (1988)
    87. A. P. Botha, R. Pretorius and S. Kritzinger, “Determination of the diffusing species and mechanism during CrSi2 formation, using Si as a marker”, Apply Physics Letters, Vol.40, Issue 5, pp.412-414, (1982)
    88. P. Wetzel, C. Pirri, J. C. Peruchetti, D. Bolmont, and G. Gewinner, “Formation of CrSi and CrSi2 upon annealing of Cr overlayers on Si (111)”, Physics Review B, Vol.35, pp.5880-5883, (1987)
    89. Silicon-Wikipedia
    90. Silica-Wikipedia
    91. Silicon Nitride-Wikipedia
    92. K. Ishizaki, “Further Evidence for Proper Function of HIP Phase Diagram”, in “Hot Isostatic Pressing Theory and Applications”, International Conference on Hot Isostatic Pressing, Ed. by M. Koizumi, Elsevier Applied Science, pp.35-40, (1992)
    93. K. Ishizaki, “Phase Diagrams under High Gas Pressure-Ellingham Diagrams for Hot Isostatic Press Process”, Acta. Met. Et Mat., Vol. 38, pp.2059-2066, (1990)
    94. K. Ishizaki, “Thermodynamics for HIP Sintering of Ceramics -Proposed HIP Phase Diagrams”, (Invited) in “Hot Isostatic Pressing Theory and Applications”, International Conference on Hot Isostatic Pressing, Ed. by R. J. Schafer and M. Linzer, ASM International, Metals Park, Ohio, pp.129-138, (1991)
    95. K. Ishizaki, “Oxygen Partial Pressure and HIPping of Ceramics-Proposed HIP Phase Diagrams”, in “Euro-Ceramics, Processing of Ceramics”, Eds. G. de With, R. A. Terpstra and R. Metselaar, Elsevier Appl. Sci., London and New York, Vol. 1, pp.314-318, (1989)

    下載圖示 校內:立即公開
    校外:2009-02-10公開
    QR CODE