簡易檢索 / 詳目顯示

研究生: 蔡宜庭
Tsai, Yi-Ting
論文名稱: 氧化矽及矽酸鐵孔洞材料之合成與應用
Synthesis and Application of Porous Silica and Iron-silicate
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 96
中文關鍵詞: 氧化矽孔洞材料矽酸鐵孔洞材料吸附
外文關鍵詞: porous silica, iron silicate, adsorption
相關次數: 點閱:99下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主旨在於,利用簡單的方法合成出具有高比表面積、不同孔洞性質及粒徑尺度之氧化矽孔洞材料及氧化鐵/氧化矽複合材料,藉由其孔洞性質及粒徑尺度之不同,可實際應用於各個領域中(如:除溼材料、二氧化碳吸附材料等),另外,在無有機模板的條件下,發展出反滴定之合成手法,可製備出具高比表面積且高分散度之鐵矽酸鹽孔洞材料,並應用在實際的煉油產業廢水處理。
    藉由各種實驗參數之調控(例如:水熱溫度、水熱時間以及鍛燒溫度)可合成出具有高比表面積且不同孔洞性質及表面性質之氧化矽孔洞材料,氧化矽孔洞材料之比表面積是影響吸附量的重要因素,而其孔洞大小及表面的親疏水性是影響水氣吸附速率的關鍵,越小的孔洞及越親水性之表面能有較快的水氣吸附速率,但也因此需較高的溫度才能將水完全脫附,並不利於藉由易取得之太陽能熱源將其再生的目標。所以需選擇具高比表面積且適宜的孔洞大小及表面性質之氧化矽孔洞材料作為除溼材料。除了吸附效能,在實際應用上亦須考量其穩定性,而本研究所合成之氧化矽孔洞材料,雖然在常態下放置長時間其比表面積有明顯下降的現象,然而其吸附量下降幅度卻不大,約15-20%,表示在吸水效能上能具有良好之穩定性。另外,單純的氧化矽孔洞材料對二氧化碳吸附效果並不佳,藉由加入氧化鐵合成氧化鐵/二氧化矽複合材料能明顯提升對二氧化碳之吸附效果。
    除了控制氧化矽孔洞材料之微觀性質(孔洞性質),亦可藉由不同的反應條件調控氧化矽孔洞材料巨觀上的性質-粒徑尺度,改變反應pH值及矽酸鈉濃度能製備出不同粒徑大小之氧化矽孔洞材料,而使用不同酸源以及不同種類的明膠有機模板,會因陰離子可能伴隨的鹽析效應及不同種類的明膠有機模板等電點不同,進而影響合成的氧化矽孔洞材料之粒徑尺度,此外,在本研究中發展出兩種合成手法,對於氧化矽孔洞材料粒徑尺度並無太大影響,能根據實際應用時之情況選擇適用的方法。
    最後,本研究亦改良實驗室先前合成金屬矽酸鹽材料的共沉澱法及剝蝕法,本研究發展出不需經高溫水熱處理且合成手法簡單之反滴定法製備具有高比表面積且分散性佳的矽酸鐵孔洞材料,實際應用在氨氮廢液中,對於氨氮的移除具有良好的效果,而氨氮廢液中除了氨氮汙染外亦含有鄰甲酚有機汙染物,利用本實驗室合成之生物炭可有效移除廢液中的鄰甲酚污染物,另外,直接以反滴定法製備高Fe/Si之F矽酸鐵孔洞材料,具有比表面積下降且孔洞性質改變之現象,故本研究利用另一種合成手法-多重塗佈法,在提高Fe/Si莫耳比之情形下,合成出孔洞性質並不隨之改變之矽酸鐵孔洞材料。

    This study develops three kinds of porous materials, namely porous silica, iron supported on porous silica, and iron-silicate. Microscopically, the pore and surface properties of the porous silica are tunable by adjusting the pH value, hydrothermal temperature, hydrothermal processing time, and calcination temperature. The porous silica with different pore and surface properties can be used in various applications, such as adsorbents for water and CO2 to reduce humidity and the greenhouse effect. As the pore size of the porous silica decreases and the surface becomes more hydrophilic, the adsorption rate of water increases. However, the water desorption temperature also increases. Consequently, the energy consumed to recycle the porous silica for reuse rises and the process becomes non-ecofriendly. Therefore, the pore size and surface property of the porous silica should carefully controlled. The synthesized porous silica demonstrates a high water adsorption performance of 23 wt.% after storage in air for half a year. Furthermore, macroscopically, the particle size of the porous silica can be controlled by adjusting the pH value and the concentration of the sodium silicate used in the synthesis process. The types of polymer used as organic templates for the porous silica and the acid solution used to adjust the pH value are also factors in determining the particle size of the synthesized porous silica due to the different isoelectric points of the polymers and the salting out effect produced by the anions from the acids. In addition to pure porous silica, iron nitrate is used to synthesize FeOx/SiO2 material and iron-silicate material. The FeOx/SiO2 material shows a high adsorption efficiency for CO2 compared to the pure porous silica. Moreover, the iron-silicate material synthesized under the optimal reaction conditions can be used for the treatment of wastewater containing ammonia-nitrogen pollutant.

    第一章 緒論 1 1-1 中孔洞材料 1 1-1.1 中孔洞材料介紹 1 1-1.2 中孔洞材料主要的研究範疇 2 1-2 矽酸鹽的化學概念 3 1-3 結合金屬氧化物與氧化矽之中孔洞複合材料 5 1-3.1 頁矽酸鹽(phyllosilicates)的介紹 5 1-3.2 常見之合成方法 7 1-4 鹽溶/鹽析效應( salting in / salting out effect ) 8 1-5 吸附理論 9 1-5.1 吸附理論的介紹(45) 9 1-5.2 等溫吸附模式 10 1-5.2 吸附動力學模式 12 1-6 研究動機 14 第二章 實驗部份及儀器設備介紹 15 2-1 實驗藥品 15 2-2 實驗步驟與流程示意圖 16 2-2.1 氧化矽孔洞材料之合成步驟 16 2-2.2 氧化鐵/二氧化矽複合孔洞材料(FeOx/SiO2) 18 2-2.3 矽酸鐵孔洞材料-反滴定法 19 2-2.4 矽酸鐵孔洞材料-多重塗佈法(用於製備高 Fe/Si 的矽酸鐵孔洞材料) 20 2-2.5 鄰甲酚的檢測-福林酚法(51-53) 21 2-3 儀器鑑定分析 22 2-3.1 熱重分析儀 (Thermogravimetry Analysis;TGA) 22 2-3.2 全反射紅外光譜法(Attenuated Total Reflectance;ATR) 22 2-3.3 X-射線粉末繞射光譜(Powder X-Ray Diffraction,XRD) 23 2-3.4 紫外光-可見光光譜儀(UV-visible Spectroscope) 24 2-3.5 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 24 2-3.6 穿透式電子顯微鏡(Transimission Electron Microscopy, TEM) 24 2-3.7 氮氣等溫吸附/脫附測量儀(N2 adsorption-desorption isotherm) 25 2-3.8 火焰原子吸收光譜儀(Atomic Absorption Spectrophotometer;AA) 30 2-3.9 銨離子電極 30 第三章 氧化矽孔洞材料之合成並應用於除溼及二氧化碳吸附之研究 .. 32 3-1 研究目的及動機 32 3-2 探討不同比表面積與孔洞大小之氧化矽孔洞材料對於水氣吸附-脫附效能與 穩定性 32 3-3 調控鍛燒溫度對於水氣吸附-脫附效能及穩定性的影響 37 3-4 不同有機模板合成之孔洞氧化矽材料對水氣吸附-脫附效能及穩定性之探討 .................................................................................................................................. 41 3-5 有機物的含量對水氣吸附-脫附效能及穩定性的影響 43 3-6 比較其他常見材料應用於水氣吸附-脫附效能及穩定性 46 3-7 氧化矽孔洞材料與氧化鐵/二氧化矽複合材料應用於二氧化碳吸附之研究55 第四章 以明膠為有機模板合成不同粒徑尺度的氧化矽孔洞材料 61 4-1 研究目的及動機 61 4-2 以 pH 值調控氧化矽孔洞材料的粒徑尺度 61 4-3 以矽酸鈉濃度控制氧化矽孔洞材料的粒徑尺度 63 4-4 不同有機模板對氧化矽孔洞材料粒徑尺度的影響 64 4-5 以不同的酸源合成對氧化矽孔洞材料粒徑尺度之影響 66 4-6 探討不同合成方法對氧化矽孔洞材料粒徑尺度的差異性 67 4-7 不同粒徑尺度的氧化矽孔洞材料之實際應用 69 第五章 以反滴定法製備矽酸鐵孔洞材料並應用於實際廢液之研究 71 5-1 研究目的及動機 71 5-2 反應 pH 值對矽酸鐵孔洞材料的影響 72 5-3 改變硝酸鐵/矽酸鈉之比例合成出不同 Fe/Si 比的矽酸鐵孔洞材料 75 5-4 水熱時間對矽酸鐵孔洞材料之影響 77 5-5 多重塗佈法製備出高比例 Fe/Si 比的矽酸鐵孔洞材料 79 5-6 實際廢液處理 81 5-6.1 探討矽酸鐵孔洞材料與其他材料吸附氨氮廢液之效能 81 5-6.2 以生物炭吸附廢液中所含之酚 87 第六章 總結 90 參考文獻 92

    1. Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710.
    2. Gibson, L., Mesosilica materials and organic pollutant adsorption: part A removal from air. Chemical Society Reviews 2014, 43 (15), 5163-5172.
    3. Everett, D., Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry 1972, 31 (4), 577-638.
    4. Fan, J.; Yu, C.; Gao, F.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D., Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angewandte Chemie International Edition 2003, 42 (27), 3146-3150.
    5. Vinu, A.; Murugesan, V.; Hartmann, M., Pore size engineering and mechanical stability of the cubic mesoporous molecular sieve SBA-1. Chemistry of materials 2003, 15 (6), 1385-1393.
    6. Lin, H. P.; Kuo, C. L.; Wan, B. Z.; Mou, C. Y., Optimum synthesis of mesoporous silica materials from acidic condition. Journal of the Chinese Chemical Society 2002, 49 (5), 899-906.
    7. Alfredsson, V.; Anderson, M. W., Structure of MCM-48 revealed by transmission electron microscopy. Chemistry of materials 1996, 8 (5), 1141-1146.
    8. Lin, H.-P.; Mou, C.-Y., Structural and morphological control of cationic surfactant- templated mesoporous silica. Accounts of chemical research 2002, 35 (11), 927-935.
    9. Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y.-U.; Terasaki, O.; Park, S.-E.; Stucky, G. D., Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers. The Journal of Physical Chemistry B 2002, 106 (10), 2552-2558.
    10. Bhaumik, A.; Inagaki, S., Mesoporous titanium phosphate molecular sieves with ion- exchange capacity. Journal of the American Chemical Society 2001, 123 (4), 691-696.
    11. Zhang, Z.; Han, Y.; Zhu, L.; Wang, R.; Yu, Y.; Qiu, S.; Zhao, D.; Xiao, F. S., Strongly acidic and high‐temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angewandte Chemie International
    Edition 2001, 40 (7), 1258-1262.
    12. Walcarius, A.; Etienne, M.; Lebeau, B., Rate of access to the binding sites in organically modified silicates. 2. Ordered mesoporous silicas grafted with amine or thiol groups. Chemistry of materials 2003, 15 (11), 2161-2173.

    13. Yokoi, T.; Yoshitake, H.; Tatsumi, T., Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di-and tri- amino-organoalkoxysilanes. Journal of Materials Chemistry 2004, 14 (6), 951-957.
    14. Noll, F.; Sumper, M.; Hampp, N., Nanostructure of diatom silica surfaces and of biomimetic analogues. Nano Letters 2002, 2 (2), 91-95.
    15. Tian, Z. R.; Liu, J.; Voigt, J. A.; Mckenzie, B.; Xu, H., Hierarchical and Self‐ Similar Growth of Self‐Assembled Crystals. Angewandte Chemie International Edition 2003, 42 (4), 413-417.
    16. Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y., Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Advanced Materials 2000, 12 (3), 206-209.
    17. Jiang, P.; Bertone, J. F.; Colvin, V. L., A lost-wax approach to monodisperse colloids and their crystals. Science 2001, 291 (5503), 453-457.
    18. Fowler, C. E.; Khushalani, D.; Mann, S., Interfacial synthesis of hollow microspheres of mesostructured silica. Chemical Communications 2001, (19), 2028- 2029.
    19. Huo, Q.; Feng, J.; Schüth, F.; Stucky, G. D., Preparation of hard mesoporous silica spheres. Chemistry of Materials 1997, 9 (1), 14-17.
    20. Lu, Y.; Fan, H.; Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J., Aerosol- assisted self-assembly of mesostructured spherical nanoparticles. Nature 1999, 398 (6724), 223.
    21. Fowler, C.; Khushalani, D.; Lebeau, B.; Mann, S., Nanoscale materials with mesostructured interiors. Advanced Materials 2001, 13 (9), 649-652.
    22. Jin, H.; Wang, L.; Bing, N., Mesoporous silica helical ribbon and nanotube-within- a-nanotube synthesized by sol–gel self-assembly. Materials letters 2011, 65 (2), 233-235.
    23. Fan, H.; Reed, S.; Baer, T.; Schunk, R.; López, G. P.; Brinker, C. J., Hierarchically structured functional porous silica and composite produced by evaporation- induced self-assembly. Microporous and Mesoporous Materials 2001, 44, 625-637.
    24. Brinker, C. J.; Scherer, G. W., Sol→ gel→ glass: I. Gelation and gel structure.
    Journal of Non-Crystalline Solids 1985, 70 (3), 301-322.
    25. Giannelis, E. P.; Krishnamoorti, R.; Manias, E., Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. In Polymers in confined environments, Springer: 1999; pp 107-147.
    26. Sheldon, R. A.; Wallau, M.; Arends, I. W.; Schuchardt, U., Heterogeneous catalysts for liquid-phase oxidations: philosophers' stones or Trojan horses? Accounts of Chemical Research 1998, 31 (8), 485-493.
    27. Voigt, A.; Murugavel, R.; Montero, M. L.; Wessel, H.; Liu, F. Q.; Roesky, H.

    W.; Usón, I.; Albers, T.; Parisini, E., Soluble molecular titanosilicates. Angewandte Chemie International Edition in English 1997, 36 (9), 1001-1003.
    28. Murugavel, R.; Roesky, H. W., Titanosilicates: recent developments in synthesis and use as oxidation catalysts. Angewandte Chemie International Edition in English 1997, 36 (5), 477-479.
    29. Clerici, M.; Bellussi, G.; Romano, U., Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. Journal of Catalysis 1991, 129 (1), 159-167.
    30. Dartt, C.; Khouw, C.; Li, H.-X.; Davis, M., Synthesis and physicochemical properties of zeolites containing framework titanium. Microporous Materials 1994, 2 (5), 425-437.
    31. Van der Waal, J.; Kooyman, P.; Jansen, J.; Van Bekkum, H., Synthesis and characterization of aluminum-free zeolite titanium beta using di (cyclohexylmethyl) dimethylammonium as a new and selective template. Microporous and mesoporous materials 1998, 25 (1-3), 43-57.
    32. Corma, A.; Fornes, V.; Navarro, M.; Perezpariente, J., Acidity and stability of MCM-41 crystalline aluminosilicates. Journal of Catalysis 1994, 148 (2), 569-574.
    33. Mokaya, R.; Jones, W.; Luan, Z.; Alba, M. D.; Klinowski, J., Acidity and catalytic activity of the mesoporous aluminosilicate molecular sieve MCM-41. Catalysis letters 1996, 37 (1-2), 113-120.
    34. Newalkar, B. L.; Olanrewaju, J.; Komarneni, S., Direct synthesis of titanium- substituted mesoporous SBA-15 molecular sieve under microwave− hydrothermal conditions. Chemistry of Materials 2001, 13 (2), 552-557.
    35. Rolison, D. R., Catalytic nanoarchitectures--the importance of nothing and the unimportance of periodicity. Science 2003, 299 (5613), 1698-1701.
    36. Garcia, F.; Silva, J.; Macedo, J.; Dias, J.; Dias Filho, S.; GNR, S., characterization of CuO/Nb2O5/MCM-41 for the catalytic oxidation of diesel soot. Microporous Mesoporous Mater 2008, 113, 562-74.
    37. Plabst, M.; McCusker, L. B.; Bein, T., Exceptional ion-exchange selectivity in a flexible open framework lanthanum (III) tetrakisphosphonate. Journal of the American Chemical Society 2009, 131 (50), 18112-18118.
    38. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of catalysis 1989, 115 (2), 301-309.
    39. Nares, R.; Ramírez, J.; Gutiérrez-Alejandre, A.; Louis, C.; Klimova, T., Ni/Hβ- zeolite catalysts prepared by deposition− precipitation. The Journal of Physical Chemistry B 2002, 106 (51), 13287-13293.

    40. Chi, Y.; Chou, T.-Y.; Wang, Y.-J.; Huang, S.-F.; Carty, A. J.; Scoles, L.; Udachin, K. A.; Peng, S.-M.; Lee, G.-H., Synthesis and characterization of fluorinated aminoalkoxide and iminoalkoxide gallium complexes: Application in chemical vapor deposition of Ga2O3 thin films. Organometallics 2004, 23 (1), 95-103.
    41. Melander, W.; Horváth, C., Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Archives of biochemistry and biophysics 1977, 183 (1), 200-215.
    42. Sadeghi, R.; Jahani, F., Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. The Journal of Physical Chemistry B 2012, 116 (17), 5234-5241.
    43. Dumetz, A. C.; Snellinger‐O'Brien, A. M.; Kaler, E. W.; Lenhoff, A. M., Patterns of protein–protein interactions in salt solutions and implications for protein crystallization. Protein Science 2007, 16 (9), 1867-1877.
    44. Hyde, A. M.; Zultanski, S. L.; Waldman, J. H.; Zhong, Y.-L.; Shevlin, M.; Peng, F., General principles and strategies for salting-out informed by the Hofmeister series. Organic Process Research & Development 2017, 21 (9), 1355-1370.
    45. Chiou, C. T.; Chiou, C., Partition and adsorption of organic contaminants in environmental systems. Wiley Online Library: 2002.
    46. Vimonses, V.; Lei, S.; Jin, B.; Chow, C. W.; Saint, C., Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal 2009, 148 (2-3), 354-364.
    47. Freundlich, H., Über die adsorption in lösungen. Zeitschrift für physikalische Chemie
    1907, 57 (1), 385-470.
    48. Ho, Y.-S.; McKay, G., The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water research 2000, 34 (3), 735-742.
    49. Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum.
    Journal of the American Chemical society 1918, 40 (9), 1361-1403.
    50. Lagergren, S., About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1-39.
    51. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J., Protein measurement with the Folin phenol reagent. Journal of biological chemistry 1951, 193, 265-275.
    52. Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M., [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology, Elsevier: 1999; Vol. 299, pp 152-178.
    53. Peterson, G. L., Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Analytical biochemistry 1979, 100 (2), 201-220.
    54. A. N. Hristov, M. H., A. Cole, R. Todd, T. A. McAllister, P. M. Ndegwa, and A. Rotz, Review: Ammonia emissions from dairy farms and beef feedlots. Canadian Journal of

    Animal Science 2011, 91, 135.
    55. Chanapattharapol, K. C.; Krachuamram, S.; Youngme, S., Study of CO2 adsorption on iron oxide doped MCM-41. Microporous and Mesoporous Materials 2017, 245, 8-15.
    56. Baltrusaitis, J.; Schuttlefield, J.; Zeitler, E.; Grassian, V. H., Carbon dioxide adsorption on oxide nanoparticle surfaces. Chemical Engineering Journal 2011, 170 (2-3), 471-481.
    57. 張以潔,林弘萍, 氧化矽孔洞材料與金屬矽酸鹽複合材料之合成與應用. 2017.
    58. Zhang, C.-H.; Wan, H.-J.; Yang, Y.; Xiang, H.-W.; Li, Y.-W., Study on the iron– silica interaction of a co-precipitated Fe/SiO2 Fischer–Tropsch synthesis catalyst. Catalysis Communications 2006, 7 (9), 733-738.
    59. Zhang, Z.; Lan, H.; Liu, H.; Li, H.; Qu, J., Iron-incorporated mesoporous silica for enhanced adsorption of tetracycline in aqueous solution. RSC Advances 2015, 5 (53), 42407-42413.
    60. Ghernaout, D.; Al-Ghonamy, A. I.; Boucherit, A.; Ghernaout, B.; Naceur, M. W.; Messaoudene, N. A.; Aichouni, M.; Mahjoubi, A. A.; Elboughdiri, N. A., Brownian motion and coagulation process. Am. J. Environ. Prot 2015, 4, 1-15.
    61. Pivovarov, S., Adsorption of ions onto amorphous silica: ion exchange model. Journal of colloid and interface science 2008, 319 (1), 374-376.
    62. Kozawa, A., Ion-exchange adsorption of zinc and copper ions on silica. Journal of Inorganic and Nuclear Chemistry 1961, 21 (3-4), 315-324.
    63. Ho, Y.-S., Review of second-order models for adsorption systems. Journal of hazardous materials 2006, 136 (3), 681-689.
    64. Bhattacharya, A.; Naiya, T.; Mandal, S.; Das, S., Adsorption, kinetics and equilibrium studies on removal of Cr (VI) from aqueous solutions using different low-cost adsorbents. Chemical engineering journal 2008, 137 (3), 529-541.
    65. Yu, Q.; Xia, D.; Li, H.; Ke, L.; Wang, Y.; Wang, H.; Zheng, Y.; Li, Q., Effectiveness and mechanisms of ammonium adsorption on biochars derived from biogas residues. RSC Advances 2016, 6 (91), 88373-88381.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE