簡易檢索 / 詳目顯示

研究生: 洪偉喬
Hung, Wei-Chiao
論文名稱: 雙面透光鈣鈦礦太陽能電池及其應用於鈣鈦礦/矽晶串疊式元件之研究
Bifacial perovskite solar cells and their application for perovskite/silicon tandem device
指導教授: 陳昭宇
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 73
中文關鍵詞: 大面積雙面透光鈣鈦礦太陽能電池鈣鈦礦/矽晶串疊型電池四接點式串疊型電池
外文關鍵詞: large area, bifacial, perovskite solar cells, perovskite/silicon tandem cell, four-terminal tandem cell
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,鈣鈦礦太陽能電池最高的效率達到25.2%,矽晶太陽能電池則是達到最高26.7%的效率,都已經越來越接近其各自的理論最高效率(鈣鈦礦太陽能電池:31%;矽晶太陽能電池:29%),為了繼續在效率上有所突破,可以將寬能隙的鈣鈦礦太陽能電池以及窄能隙的矽晶太陽能電池以串疊(Tandem)的方式組合成一四接點式(Four terminal, 4T)鈣鈦礦/矽晶串疊式電池來提升其效率,理論上最高可以到39%左右的效率,本研究主要聚焦於寬能隙的鈣鈦礦電池之優化,藉由將其結構改為雙面透光式元件,使在進行串疊型元件時窄能隙的矽晶電池也能夠接受到光而產生效率。
    由於先前的文獻中所提到的鈣鈦礦/矽晶串疊型電池大部分的工作面積都還介於0.09平方公分至0.25平方公分中間,此面積對於要將其商業化的方向來看的話是遠遠不夠的,因此本研究中主要以工作面積為1.02平方公分的元件來進行製作並且優化,期許能夠進一步將鈣鈦礦元件在較大工作面積下的效率往上提升。
    研究中利用不同儀器來分析鈣鈦礦電池內的各層對於整體元件穿透度的影響並改善之,並且透過在鈣鈦礦電池的透明對電極上加上金導線來增加透明電極在大面積下導電性不足的情況,並在整體元件穿透度與透明電極導電性中取得一較好的平衡,最後將完成的雙面透鈣鈦礦元件應用至四接點式鈣鈦礦/矽晶串疊型電池上並透過IV、IPCE量測來分析其轉換效率,最終分別得到一工作面積為1.02平方公分,轉換效率(PCE)為14.66%的雙面透光鈣鈦礦太陽能電池以及20.92%的四接點式鈣鈦礦/矽晶串疊型電池。

    Nowadays, perovskite solar cells (PSCs) and silicon solar cells (SSCs) have achieved a promising power conversion efficiency of 25.2% and 26.7%, respectively, that are close to their theoretical limitation. (PSCs=31%; SSCs=29%) In order to further boost the efficiency of solar cells, tandem solar cells by stacking high-bandgap PSCs as the top cell and low-bandgap SSCs as bottom cell have been proposed whose theoretical efficiency can reach 39%. Although previous works have demonstrated the perovskite/tandem solar cell, the active area of the tandem cell is limited within 0.09 to 0.25 cm2. Such a small active area is incapable of commercial application. In this research, we aim to fabricate large-area perovskite/silicon tandem cells. Bifacial PSCs is fabricated by using transparent conductive oxide electrode of IZO as the top transparent electrode and stacks with SSCs under mechanical tandem architecture with four terminal connection to form perovskite/silicon tandem solar cells. In order to reduce the lateral resistance of the IZO transparent electrode, the finger Au electrode is introduced on the top of the IZO transparent electrode. Large-area bifacial PSCs with an active area of 1.02 cm2 deliver a remarkable efficiency of 14.66% after optimizing the film quality and bandgap of perovskite light absorber, the transmittance and sheet resistance of IZO, and the finger Au spacing. Eventually, a promising PCE of 20.92% for four-terminal perovskite/silicon tandem cell with 1.02 cm2 active area is demonstrated.

    摘要 i 致謝 xiii 目錄 xiv 表目錄 xvii 圖目錄 xviii 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池之演進與發展 1 1.2.1 第一代太陽能電池(Silicon Based) 2 1.2.2 第二代太陽能電池(Thin Film) 2 1.2.3 第三代太陽能電池(New Concept) 3 1.3 太陽能電池之原理與量測 6 1.3.1 太陽光譜輻照度(Spectrum irradiance)與空氣質量(Air Mass) 6 1.3.2 Shockley-Queisser limit 6 1.3.3 太陽能電池元件量測 7 1.4 研究動機 9 第二章 文獻回顧 11 2.1 有機無機混成鈣鈦礦太陽能電池之發展 11 2.2 鈣鈦礦/矽晶串疊型太陽能電池發展 14 2.2.1 鈣鈦礦/矽晶串疊型電池與其發展潛力 14 2.2.2 二接點式鈣鈦礦/矽晶串疊型電池 15 2.2.3 四接點式鈣鈦礦/矽晶串疊型電池 21 第三章 實驗方法與儀器分析 29 3.1 實驗儀器與藥品 29 3.2 實驗流程 30 3.3.1 基板蝕刻 30 3.3.2 cp-TiO2電洞阻擋層/緻密層製備 30 3.3.3 SnO2電子傳輸層製備 30 3.3.4 鈣鈦礦吸光層製備 31 3.3.5 Spiro-OMeTAD電洞傳輸層製備 31 3.3.6 IZO+Au對電極製備 31 3.3 量測、特性分析儀器原理 32 3.4.1 穿透度光譜量測 (Ultraviolet-visible spectrophotometer,UV-Vis) 32 3.4.2 光致發光光譜儀 (Photoluminescence,PL) 33 3.4.3 表面粗度儀 (α-step) 33 3.4.4 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 33 3.4.5 四點探針電性量測 (Four-point probe) 34 3.4.6 IV特性曲線與外部量子轉換效率量測(IPCE) 34 第四章 結果與討論 35 4.1 雙面透鈣鈦礦元件的優化 35 4.1.1 IZO透明導電膜的選擇以及分析 35 4.1.2 鈣鈦礦能隙(Band gap)的調控與分析 39 4.1.3 外加金屬導線優化分析 42 4.1.4 電洞傳輸層Spiro-OMeTAD穿透度分析 45 4.1.5 FTO穿透度分析 48 4.1.6 電子傳輸層置換分析 50 4.1.7 IV、IPCE量測分析 51 4.1.8 元件TEM結構分析 54 4.2 四接點式鈣鈦礦/矽晶串疊型電池應用 57 4.2.1 Silicon電池量測 57 4.2.2 4T tandem cell之IV、IPCE分析 60 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 65 參考文獻 67

    [1] M. Becquerel, "Mémoire sur les effets électriques produits sous l'influence des rayons solaires," Comptes rendus hebdomadaires des séances de l'Académie des sciences, 1839, 9, 561-567.
    [2] C. E. Fritts, "On a new form of selenium cell, and some electrical discoveries made by its use," American Journal of Science, 1883, 156, 465-472.
    [3] R. S. Ohl, "Light-sensitive electric device," ed: Google Patents, 1946.
    [4] D. M. Chapin, C. Fuller, and G. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, 1954, 25, 5, 676-677.
    [5] F. Haase, C. Hollemann, S. Schäfer, A. Merkle, M. Rienäcker, J. Krügener, R. Brendel, and R. Peibst, "Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells," Solar Energy Materials and Solar Cells, 2018, 186, 184-193.
    [6] J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, and M. Hermle, "High-efficiency n-type HP mc silicon solar cells," IEEE journal of photovoltaics, 2017, 7, 5, 1171-1175.
    [7] T. Matsui, A. Bidiville, K. Maejima, H. Sai, T. Koida, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, and M. Kondo, "High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability," Applied Physics Letters, 2015, 106, 5, 053901.
    [8] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, "Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%," IEEE Journal of Photovoltaics, 2019, 9, 6, 1863-1867.
    [9] B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, "27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination," in 2011 37th IEEE Photovoltaic Specialists Conference, 2011, 000004-000008.
    [10] M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, M. Yoshita, and A. W. Ho‐Baillie, "Solar cell efficiency tables (version 54)," Progress in Photovoltaics: Research and Applications, 2019, 27, 7, 565-575.
    [11] B. O'regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, 1991, 353, 6346, 737.
    [12] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chemical Communications, 2015, 51, 88, 15894-15897.
    [13] M. Grätzel, "Dye-sensitized solar cells," Journal of photochemistry and photobiology C: Photochemistry Reviews, 2003, 4, 2, 145-153.
    [14] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, 2009, 131, 17, 6050-6051.
    [15] E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, and J. Seo, "Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene)," Nature, 2019, 567, 7749, 511.
    [16] NREL, "Best Research-Cell Efficiency Chart." https://www.nrel.gov/pv/cell-efficiency.html (accessed 2020).
    [17] A. Antonini, "Photovoltaic Concentrators - Fundamentals, Applications, Market & Prospective," 2010.
    [18] PVEDUCATION, "IV Curve." https://www.pveducation.org/pvcdrom/solar-cell-operation/iv-curve (accessed 2020).
    [19] A. H. M. E. Reinders, Verlinden, P.J., van Sark, W.G.J.H.M., Freundlich, A., Photovoltaic Solar Energy : From Fundamentals to Applications. . Wiley & Sons, 2016.
    [20] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, 2012, 2, 1, 591.
    [21] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, 2013, 499, 7458, 316-319.
    [22] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature Materials, 2014, 13, 9, 897-903.
    [23] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & Environmental Science, 2016, 9, 6, 1989-1997.
    [24] K. Yamamoto, K. Yoshikawa, H. Uzu, and D. Adachi, "High-efficiency heterojunction crystalline Si solar cells," Japanese Journal of Applied Physics, 2018, 57, 8S3, 08RB20.
    [25] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, 2017, 2, 5, 17032.
    [26] S. Wenger, "Strategies to Optimizing Dye-Sensitized Solar CellsOrganic Sensitizers, Tandem Device Structures, and Numerical Device Modeling," EPFL, 2010.
    [27] A. Rajagopal, Z. Yang, S. B. Jo, I. Braly, L. Po Wei, H. Hillhouse, and A. Jen, "Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage," Advanced Materials, 2017, 29, 1702140.
    [28] J. P. Mailoa, C. D. Bailie, E. C. Johlin, E. T. Hoke, A. J. Akey, W. H. Nguyen, M. D. McGehee, and T. Buonassisi, "A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction," Applied Physics Letters, 2015, 106, 12, 121105.
    [29] S. Albrecht, M. Saliba, J. P. Correa Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. K. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, "Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature," Energy & Environmental Science, 2016, 9, 1, 81-88.
    [30] J. Werner, C.-H. Weng, A. Walter, L. Fesquet, J. P. Seif, S. De Wolf, B. Niesen, and C. Ballif, "Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm2," The Journal of Physical Chemistry Letters, 2016, 7, 1, 161-166.
    [31] J. Werner, L. Barraud, A. Walter, M. Bräuninger, F. Sahli, D. Sacchetto, N. Tétreault, B. Paviet-Salomon, S.-J. Moon, C. Allebé, M. Despeisse, S. Nicolay, S. De Wolf, B. Niesen, and C. Ballif, "Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells," ACS Energy Letters, 2016, 1, 2, 474-480.
    [32] K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, "23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability," Nature Energy, 2017, 2, 4, 17009.
    [33] OxfordPV, "Oxford PV perovskite solar cell achieves 28% efficiency." https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency (accessed 2020).
    [34] M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and A. W. Y. Ho-Baillie, "Solar cell efficiency tables (Version 55)," Progress in Photovoltaics: Research and Applications, 2020, 28, 1, 3-15.
    [35] M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, "Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency," Advanced Energy Materials, 2020, 10.1002/aenm.201904102.
    [36] HZB, "World Record: Efficiency of perovskite silicon tandem solar cell jumps to 29.15 percent." https://www.helmholtz-berlin.de/pubbin/news_seite?nid=21020;sprache=en;seitenid=73236 (accessed 2020).
    [37] C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, M. Grätzel, R. Noufi, T. Buonassisi, A. Salleo, and M. D. McGehee, "Semi-transparent perovskite solar cells for tandems with silicon and CIGS," Energy & Environmental Science, 2015, 8, 3, 956-963.
    [38] C. Roldán-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. J. Bolink, "High efficiency single-junction semitransparent perovskite solar cells," Energy & Environmental Science, 2014, 7, 9, 2968-2973.
    [39] C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y.-K. R. Wu, and L. J. Guo, "An Ultrathin, Smooth, and Low-Loss Al-Doped Ag Film and Its Application as a Transparent Electrode in Organic Photovoltaics," Advanced Materials, 2014, 26, 32, 5696-5701.
    [40] E. Della Gaspera, Y. Peng, Q. Hou, L. Spiccia, U. Bach, J. J. Jasieniak, and Y.-B. Cheng, "Ultra-thin high efficiency semitransparent perovskite solar cells," Nano Energy, 2015, 13, 249-257.
    [41] P. Löper, S.-J. Moon, S. Martín de Nicolas, B. Niesen, M. Ledinsky, S. Nicolay, J. Bailat, J.-H. Yum, S. De Wolf, and C. Ballif, "Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells," Physical Chemistry Chemical Physics, 2015, 17, 3, 1619-1629.
    [42] K. A. Bush, C. D. Bailie, Y. Chen, A. R. Bowring, W. Wang, W. Ma, T. Leijtens, F. Moghadam, and M. D. McGehee, "Thermal and Environmental Stability of Semi-Transparent Perovskite Solar Cells for Tandems Enabled by a Solution-Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode," Advanced Materials, 2016, 28, 20, 3937-3943.
    [43] B. Chen, Y. Bai, Z. Yu, T. Li, X. Zheng, Q. Dong, L. Shen, M. Boccard, A. Gruverman, Z. Holman, and J. Huang, "Efficient Semitransparent Perovskite Solar Cells for 23.0%-Efficiency Perovskite/Silicon Four-Terminal Tandem Cells," Advanced Energy Materials, 2016, 6, 19, 1601128.
    [44] T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.-C. Wang, T. C. Kho, K. C. Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y.-B. Cheng, T. P. White, K. Weber, and K. Catchpole, "Rubidium Multication Perovskite with Optimized Bandgap for Perovskite-Silicon Tandem with over 26% Efficiency," Advanced Energy Materials, 2017, 7, 14, 1700228.
    [45] T. Duong, H. Pham, T. C. Kho, P. Phang, K. C. Fong, D. Yan, Y. Yin, J. Peng, M. A. Mahmud, S. Gharibzadeh, B. A. Nejand, I. M. Hossain, M. R. Khan, N. Mozaffari, Y. Wu, H. Shen, J. Zheng, H. Mai, W. Liang, C. Samundsett, M. Stocks, K. McIntosh, G. G. Andersson, U. Lemmer, B. S. Richards, U. W. Paetzold, A. Ho-Ballie, Y. Liu, D. Macdonald, A. Blakers, J. Wong-Leung, T. White, K. Weber, and K. Catchpole, "High Efficiency Perovskite-Silicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite," Advanced Energy Materials, 2020, 10, 9, 1903553.
    [46] D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, "A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells," Science, 2016, 351, 6269, 151.
    [47] T. Duong, N. Lal, D. Grant, D. Jacobs, P. Zheng, S. Rahman, H. Shen, M. Stocks, A. Blakers, K. Weber, T. P. White, and K. R. Catchpole, "Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal Tandem," IEEE Journal of Photovoltaics, 2016, 6, 3, 679-687.
    [48] J. Peng, T. Duong, X. Zhou, H. Shen, Y. Wu, H. K. Mulmudi, Y. Wan, D. Zhong, J. Li, T. Tsuzuki, K. J. Weber, K. R. Catchpole, and T. P. White, "Efficient Indium-Doped TiOx Electron Transport Layers for High-Performance Perovskite Solar Cells and Perovskite-Silicon Tandems," Advanced Energy Materials, 2017, 7, 4, 1601768.
    [49] M. Jaysankar, M. Filipič, B. Zielinski, R. Schmager, W. Song, W. Qiu, U. W. Paetzold, T. Aernouts, M. Debucquoy, R. Gehlhaar, and J. Poortmans, "Perovskite–silicon tandem solar modules with optimised light harvesting," Energy & Environmental Science, 2018, 11, 6, 1489-1498.
    [50] H. A. Dewi, H. Wang, J. Li, M. Thway, R. Sridharan, R. Stangl, F. Lin, A. G. Aberle, N. Mathews, A. Bruno, and S. Mhaisalkar, "Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems," ACS Applied Materials & Interfaces, 2019, 11, 37, 34178-34187.
    [51] A. J. Bett, K. M. Winkler, M. Bivour, L. Cojocaru, Ö. Ş. Kabakli, P. S. C. Schulze, G. Siefer, L. Tutsch, M. Hermle, S. W. Glunz, and J. C. Goldschmidt, "Semi-Transparent Perovskite Solar Cells with ITO Directly Sputtered on Spiro-OMeTAD for Tandem Applications," ACS Applied Materials & Interfaces, 2019, 11, 49, 45796-45804.
    [52] D. Chen, S. Pang, L. Zhou, X. Li, A. Su, W. Zhu, J. Chang, J. Zhang, C. Zhang, and Y. Hao, "An efficient TeO2/Ag transparent top electrode for 20%-efficiency bifacial perovskite solar cells with a bifaciality factor exceeding 80%," Journal of Materials Chemistry A, 2019, 7, 25, 15156-15163.
    [53] Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang, C. Wang, X. Ren, Z. Yang, Z. Liu, X. Xu, Q. Chang, S. Yang, F. Meng, Z. Liu, N. Yuan, J. Ding, S. Liu, and D. Yang, "27%-Efficiency Four-Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh," Advanced Functional Materials, 2020, 30, 4, 1908298.
    [54] S.-W. Lee, S. Bae, K. Cho, S. Kim, J.-K. Hwang, W. Lee, S. Lee, J. Y. Hyun, S. Lee, S. B. Choi, H. Chun, W. M. Kim, Y. Kang, H.-S. Lee, and D. Kim, "Sputtering of TiO2 for High-Efficiency Perovskite and 23.1% Perovskite/Silicon 4-Terminal Tandem Solar Cells," ACS Applied Energy Materials, 2019, 2, 9, 6263-6268.
    [55] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, 2004, 432, 7016, 488-492.
    [56] T. Tohsophon, A. Dabirian, S. De Wolf, M. Morales-Masis, and C. Ballif, "Environmental stability of high-mobility indium-oxide based transparent electrodes," APL Materials, 2015, 3, 11, 116105.
    [57] G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, 1976, 47, 9, 4086-4089.
    [58] H.-C. Pan, M.-H. Shiao, C.-Y. Su, and C.-N. Hsiao, "Influence of sputtering parameter on the optical and electrical properties of zinc-doped indium oxide thin films," Journal of Vacuum Science & Technology A, 2005, 23, 4, 1187-1191.
    [59] N. Ito, Y. Sato, P. K. Song, A. Kaijio, K. Inoue, and Y. Shigesato, "Electrical and optical properties of amorphous indium zinc oxide films," Thin Solid Films, 2006, 496, 1, 99-103.
    [60] J. Liu, Y. Wu, C. Qin, X. Yang, T. Yasuda, A. Islam, K. Zhang, W. Peng, W. Chen, and L. Han, "A dopant-free hole-transporting material for efficient and stable perovskite solar cells," Energy & Environmental Science, 2014, 7, 9, 2963-2967.
    [61] K. Jäger, L. Korte, B. Rech, and S. Albrecht, "Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures," Opt. Express, 2017, 25, A473.
    [62] M. F. Mohamad Noh, C. H. Teh, R. Daik, E. L. Lim, C. C. Yap, M. A. Ibrahim, N. Ahmad Ludin, A. R. b. Mohd Yusoff, J. Jang, and M. A. Mat Teridi, "The architecture of the electron transport layer for a perovskite solar cell," Journal of Materials Chemistry C, 2018, 6, 4, 682-712.
    [63] E. H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Grätzel, A. Hagfeldt, and J.-P. Correa-Baena, "Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide," Energy & Environmental Science, 2016, 9, 10, 3128-3134.
    [64] P.-K. Kung, M.-H. Li, P.-Y. Lin, Y.-H. Chiang, C.-R. Chan, T.-F. Guo, and P. Chen, "A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells," Advanced Materials Interfaces, 2018, 5, 22, 1800882.
    [65] EnliTechnology, "solar simulator spectral match figure." https://zh-tw.enlitechnology.com/50-mm-x-50-mm-aaa-solar-simulator.html (accessed 2020).

    下載圖示 校內:2025-07-09公開
    校外:2025-07-09公開
    QR CODE