簡易檢索 / 詳目顯示

研究生: 王敬仁
Wang, Jing-Ren
論文名稱: 平面六連桿機構加速度極心之研究
On the Acceleration Poles of Planar Six-Bar Linkages
指導教授: 黃文敏
Hwang, Wen-Miin
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 105
中文關鍵詞: 平面六連桿機構加速度極心路徑演生機構耦桿點曲線
外文關鍵詞: planar six-bar mechanism, acceleration pole, path generator, coupler curve
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於加速度極心是耦桿平面上瞬時加速度為零之點,若以此點為耦桿點,機構之耦桿點曲線在此加速度極心之鄰域的運動特性,為有限長度的近似直線位移且瞬時等速。對於需要等速地在工作點附近形成一段有限長度的近似直線運動之應用,加速度極心為此應用的最佳選擇。現有文獻指出,輸入桿為等轉速的平面四連桿機構之耦桿點曲線,可通過指定的兩個加速度極心,但迄今為止尚未找到通過三個以上加速度極心之機構。
    本研究之目的在於合成可通過三個以上加速度極心的平面六連桿機構,並探討加速度極心之相關特性,所提出之設計方法可同時應用於Watt-I型、Stephenson-III型與Stephenson-I型機構之尺度合成。針對輸入桿為等轉速之三型平面六連桿機構,本文分別推導其加速度極心在固定平面及耦桿平面上之參數式,並將加速度極心曲線分別描繪在上述兩個平面上,再利用耦桿平面上加速度極心曲線的多重點作為耦桿點,其耦桿點曲線即可通過多個加速度極心。綜合所推導的加速度極心之參數式與多重點之存在條件,本文提出一套設計流程,依據指定通過的加速度極心之數目,條列出所須滿足的聯立方程式,並建立包含所有需求方程式的目標函數。然後,以最佳化方法將目標函數值最佳化至零,即可合成所求的平面六連桿機構,使其可在相對應的曲柄角度時通過指定的加速度極心。
    本文以數個範例來驗證所提出之設計流程的可行性。針對Watt-I型機構的加速度極心,首先以通過兩個加速度極心的Watt-I型機構與四連桿機構來作比較,再以不同初始值合成通過三個加速度極心的兩個Watt-I型機構,並找到通過四個加速度極心的Watt-I型機構。至於Stephenson-III型機構的加速度極心,藉由所提出的設計流程,推論Stephenson-III型機構最多可通過五個加速度極心,並成功地找到通過四個與五個加速度極心的Stephenson-III型機構。最後,針對Stephenson-I型機構提出另一類設計目標,在加入指定耦桿點通過加速度極心時的速度之條件下,合成通過兩個加速度極心的Stephenson-I型機構。

    An acceleration pole is the point on the coupler plane having zero acceleration. If it is chosen as the coupler point, the path of the coupler point has the properties of an approximate straight line within a limited distance and a constant velocity in the vicinity of the acceleration pole. In practical applications, the acceleration pole is the best choice if it is required to design a path generator for tracing an approximate straight line with a constant velocity in the vicinity of the working points. A previous study indicated that the coupler point of a planar four-bar mechanism driven by a crank with a constant rotational speed could pass through two acceleration poles. But the synthesis of planar mechanisms with a coupler point passing through three or more acceleration poles has not been previously reported.
    The present study is to synthesize six-bar mechanisms with coupler points passing through three or more acceleration poles and to explore some related characteristics of the acceleration poles. A general synthesis method is proposed for synthesizing the Watt-I, Stephenson-III, and Stephenson-I mechanisms simultaneously. The parametric equations expressing the loci of the acceleration pole on the fixed link and the coupler plane for each mechanism driven by a crank with a constant rotational speed are derived. The desired coupler point of a path generator passing through three or more acceleration poles should be a multiple point on the locus of the acceleration pole described on the coupler plane. Using the parametric equations and the existence conditions for the multiple point on the locus of the acceleration pole on the coupler plane, a synthesis procedure is proposed for solving these equations. According to the number of the specified acceleration poles, the required equations are used to establish an objective function. Then, the value of the objective function is minimized to zero for obtaining the dimensions of each mechanism for generating a coupler curve with three or more specified acceleration poles that accord with the specified crank angles.
    Some examples are provided to illustrate the feasibility of the proposed method. First of all, a Watt-I mechanism passing through two acceleration poles is synthesized to compare with a four-bar mechanism. Two Watt-I mechanisms passing through three same acceleration poles are synthesized from different initial guesses. A Watt-I path generator that guides a coupler point through four specified acceleration poles that accord with four crank angles is found. Secondly, a Stephenson-III mechanism for generating a coupler curve with four or five specified acceleration poles is obtained. Finally, a modified procedure is proposed for synthesizing the Stephenson-I mechanism with the specified velocities while the coupler point passing through two specified acceleration poles.

    摘 要 I 英文摘要 III 誌 謝 V 目 錄 VI 圖 目 錄 VIII 表 目 錄 IX 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目的與方法 7 1.4 本文架構 7 第二章 平面四連桿與六連桿機構加速度極心之簡介 9 2.1 加速度極心簡介 9 2.2 以加速度像驗證加速度極心 10 2.3 平面四連桿機構加速度極心曲線簡介 11 2.4 平面六連桿機構之類型 14 2.5 本章結論 15 第三章 Watt-I型機構之加速度極心 16 3.1 Watt-I型機構之加速度極心參數式 16 3.2 通過多個加速度極心之Watt-I型機構 23 3.2.1 耦桿平面上的加速度極心曲線之多重點 23 3.2.2 通過加速度極心之耦桿點極坐標 24 3.2.3 耦桿點可通過固定平面上加速度極心之數目 24 3.2.4 合成Watt-I型機構之數值方法 27 3.3 合成通過多個加速度極心之Watt-I型機構 29 3.3.1 通過兩個加速度極心之Watt-I型機構 29 3.3.2 通過三個加速度極心之Watt-I型機構 34 3.3.3 通過四個加速度極心之Watt-I型機構 42 3.4 本章結論 47 第四章 Stephenson-III型機構之加速度極心 48 4.1 Stephenson-III型機構之加速度極心參數式 48 4.2 通過多個加速度極心之Stephenson-III型機構 54 4.3 通過四個加速度極心之Stephenson-III型機構 56 4.4 通過五個加速度極心之Stephenson-III型機構 60 4.5 本章結論 67 第五章 Stephenson-I型機構之加速度極心 70 5.1 Stephenson-I型機構之加速度極心參數式 70 5.2 通過多個加速度極心並指定其耦桿點速度之Stephenson-I型機構 77 5.3 通過兩個加速度極心並指定其耦桿點速度之Stephenson-I型機構 80 5.4 本章結論 85 第六章 結論與建議 87 參考文獻 90 附 錄 A 初始值的選擇 96 附 錄 B Java程式 103 著作權聲明 105

    1. Hall, A. S., Jr., Kinematics and Synthesis of Linkages, McGraw-Hall, Inc., New York, p. 6, 1986.
    2. Aronhold, S., “Grundzüge der kinematischen geometrie,” Verhandlungen des Vereins zur Beförderung des Gewerbefleisses in Preussen, Vol. 51, pp. 129-155, 1872.
    3. Kennedy, A. B. W., The Mechanics of Machinery, Macmillan, London, 1886.
    4. Rosenauer, N. and Willis, A. H., Kinematics of Mechanism, Associated General Publications Proprietary Ltd., Sydney, Australia, pp. 145-147; pp. 155-156, 1953. (Republished by Dover Publications, Inc., New York, 1967.)
    5. Mehmke, R., “Über die geschwindigkeiten beliebiger ordnung eines in seiner ebene bewegten ähnlich veränderlichen ebenen systems,” Civilingenieur, Vol. 29, p. 487, 1883.
    6. Wittenbauer, F., “Beschleunigungszustand kinematischer ketten und seine konstruktive ermittlung,” Civilingenieur, Vol. 42, pp. 777-780, 1896.
    7. Grübler, M., Getriebelehre, Berlin, 1917.
    8. Federhofer, K., “Zur syntheses der getriebe,” Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 3, pp. 217-222, 1923.
    9. Beyer, R., Technische Kinematik, Johann Ambrosius Barth, Leipzig, p. 239, 1931. (Lithoprint publication by Edwards, J. W., Ann Arbor, Mich., 1948.)
    10. Rosenauer, N. “Ein graphoanalytisches Verfahren zur Bestimmung des Beschleunigungspoles und der Beschleunigungspolkurven der ebenen Bewegung,” Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 18, No. 2, pp. 136-138, 1938.
    11. Beyer, R., Kinematishe Getriebesynthese, Springer Verlag, Berlin, pp. 86-89; pp. 111-114, 1953. (Translated by Kuenzel, H.: The Kinematic Synthesis of Mechanisms, Chapman & Hall Ltd., London, 1963.)
    12. Hain, K., Angewandte Getriebelehre, VDI Verlag, Düsseldorf, pp. 149-158, 1961. (Translated by Goodman, T. P., Adams, D. P., Harding, B. L., and Raichel, D. R., Applied Kinematics, 2nd ed., McGraw-Hill Book Company, New York, 1967.)
    13. Rosenauer, N., “Acceleration center curves,” Australia Journal of Applied Science, Vol. 5, No. 2, pp. 103-115, 1954.
    14. Schiller, R. W., “Method for determining the instantaneous center of acceleration for a given link,” ASME Transactions, Journal of Mechanical Design, p. 218, 1965.
    15. Dijksman, E. A., Motion Geometry of Mechanisms, Cambridge University Press, Cambridge, p. 255; p. 262, 1976.
    16. Roth, B. and Yang, A. T., “Application of instantaneous invariants to the analysis and synthesis of mechanisms,” ASME Transactions, Journal of Engineering for Industry, pp. 97-103, 1977.
    17. Hunt, K. H., Kinematic Geometry of Mechanism, Oxford University Press, Oxford, pp. 108-110; p. 150; pp. 154-155; p. 201, 1978.
    18. Bottema, O. and Roth, B., Theoretical Kinematics, North-Holland Publishing Company, Amsterdam, Netherlands, p. 258; pp. 295-298, 1979.
    19. Kimbrell, J. T., “Graphical synthesis of a 4-bar mechanism,” Mechanism and Machine Theory, Vol. 19, No. 1, pp. 45-49, 1984.
    20. Yang, A. T., Pennock, G. R., and Hsia, L. M., “Instantaneous invariants and curvature analysis of a planar four-link mechanism,” ASME Transactions, Journal of Mechanical Design, Vol. 116, pp. 1173-1176, 1994.
    21. Hwang, W. M. and Fan, Y. S., “Coordination of two crank angles and two acceleration poles for a slider crank mechanism using parametric equations,” Proceedings of the Institution of Mechanical Engineers Part C - Journal of Mechanical Engineer Science, Vol. 222, No. 3, pp. 483-491, 2008.
    22. Müller, R., “Über einige kurven, die mit der Theorie des ebenen Gelenkvierecks im Zusammenhang stehen,” Zeitschrift für Angewandte Mathematik und Physik, Vol. 48, pp. 224-248, 1903.
    23. Chiang, C. H., Kinematics and Design of Planar Mechanisms, Krieger Publishing Company, Florida, U.S.A., pp. 55-58; pp. 393-394, 2000.
    24. Hwang, W. M. and Fan, Y. S., “Polynomial equations for the loci of the acceleration pole of a slider crank mechanism,” Mechanism and Machine Theory, Vol. 43, No. 2, pp. 127-137, 2008.
    25. Mayer, A. E., “Koppelkurven mit drei Spitzen und spezielle Koppelkurven-Büschel,” Zeitschrift für Angewandte Mathematik und Physik, Vol. 43, pp. 389-445, 1938.
    26. Meyer zur Capellen, W. and Krumm, H. “Conjugate positions for planar four-bar mechanisms and corresponding special forms of the coupler curves,” Mechanism and Machine Theory, Vol. 8, pp. 71-94, 1973.
    27. Beyer, R., “Koppelkurven mit drei Spitzen und spezielle Koppelkurven-Büschel,” Zeitschrift des Vereins Deutscher Ingenieure für Maschinenbau und Metallbearbeitung, Vol. 82, p. 124, 1939.
    28. Shimojima, H. and Ogawa, K., “Synthesis of planar six-link path generator (Part 1, on the cusps of Stephenson-I mechanism),” Bulletin of the Japan Society of Mechanical Engineers, Vol. 15, No. 90, pp. 1617-1624, 1972.
    29. Chang, C. F. and Hwang, W. M., “Kinematic synthesis of Watt-I mechanisms generating closed coupler curves with up to four cusps,” Mechanism and Machine Theory, Vol. 29, No. 4, pp. 501-511, 1994.
    30. 范揚昇,平面四連桿機構加速度極心之特性研究,博士論文,國立成功大學機械工程學系,台南,2008。
    31. Veldkamp, G. R., “Canonical systems and instantaneous invariants in spatial kinematics,” Journal of Mechanisms, Vol. 2, pp. 329-388, 1967.
    32. Mohamed, M. G., “Kinematics of rigid bodies in general spatial motion: second-order motion properties,” Applied Mathematical Modeling, Vol. 21, No. 8, pp. 471-532, 1997.
    33. Chiang, C. H., “Simplified graphical acceleration analysis of four-bar linkages,” Journal of Mechanisms, Vol. 5, pp. 549-562, 1970.
    34. Figliolini, G., Conte, M., and Rea, P., “Algebraic algorithm for the kinematic analysis of slider-crank/rocker mechanisms,” Journal of Mechanisms and Robotics, Vol. 4, No. 3, pp. 743-752, 2012.
    35. Hrones, J. A. and Nelson, G. L., Analysis of the Four-Bar Linkage, John Wiley & Sons, Inc., New York, 1951.
    36. Antuma, H. J., “Triangular nomograms for symmetrical coupler curves,” Mechanism and Machine Theory, Vol. 13, No. 3, pp. 251-267, 1978.
    37. Davies, T. H., “Proposals for a finite 5-dimensional atlas of crank-rocker coupler curves,” Mechanism and Machine Theory, Vol. 16, No. 5, pp. 517-530, 1981.
    38. Jensen, P. W., “Synthesis of four-bar linkages with a coupler point passing through 12 points,” Mechanism and Machine Theory, Vol. 19, No. 1, pp. 149-159, 1981.
    39. 廖天志,選取平面四連桿組耦桿曲線的電腦軟體之發展,碩士論文,國立成功大學機械工程學系,台南,1989。
    40. Unruh, V. and Krishnaswami, P., “Computer-aided design technique for semi-automated infinite point coupler curves synthesis of four-bar linkages,” ASME Transactions, Journal of Mechanical Design, Vol. 117, No. 1, pp. 143-149, 1995.
    41. Tsai, L. W. and Morgan, A. P., “Solving the kinematics of the most general six- and five-degree-of-freedom manipulators by continuation methods,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 107, No. 2, pp. 189-200, 1985.
    42. Tsai, L. W. and Lu, J. J., “Coupler-point-curve synthesis using homotopy methods,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 122, No. 3, pp. 384-389, 1990.
    43. Subbian, T. and Flugrad, D. R., “Four-bar path generation synthesis by a continuation method,” ASME Transactions, Journal of Mechanical Design, Vol. 113, No. 1, pp. 63-69, 1991.
    44. Wampler, C. W., Morgan, A. P., and Sommese, A. J., “Complete solution of the nine-point path synthesis problem for four-bar linkages,” ASME Transactions, Journal of Mechanical Design, Vol. 114, No. 1, pp. 153-159, 1992.
    45. Dhingra, A. K., Cheng, J. C., and Kohli, D., “Synthesis of six-link, slider-crank and four-link mechanisms for function, path and motion generation using homotopy with m-homogenization,” ASME Transactions, Journal of Mechanical Design, Vol. 116, No. 4, pp. 1122-1131, 1994.
    46. Liu, A. X. and Yang, T. L., “Finding all solutions to unconstrained nonlinear optimization for approximate synthesis of planar linkages using continuation method,” ASME Transactions, Journal of Mechanical Design, Vol. 121, No. 3, pp. 368-374, 1999.
    47. Zhang, J. and Chen, Y., “Improved homotopy iteration method and applied to the nine-point path synthesis problem for four-bar linkages,” Chinese Journal of Mechanical Engineering, Vol. 13, No. 1, pp. 10-16, 2000.
    48. Tari, H. and Su, H. J., “Complete solution to the eight-point path generation of slider-crank four-bar linkages,” ASME Transactions, Journal of Mechanical Design, Vol. 132, No. 8, pp. 0810031-0810037, 2010.
    49. 陳怡傑,平面四連桿與六連桿機構之無缺陷尺度合成,博士論文,國立成功大學機械工程學系,台南,2008。

    無法下載圖示 校內:2014-12-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE