| 研究生: |
許禮堯 Hsu, Li-Yao |
|---|---|
| 論文名稱: |
電極與孔洞之彈電互制行為 Electro-mechanical behavior of an electrode interacting with a hole |
| 指導教授: |
宋見春
Sung, Jen-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 壓電材料 、電極 、孔洞 、互制效應 |
| 外文關鍵詞: | piezoelectric, hole, electrode, electro-mechanical. |
| 相關次數: | 點閱:113 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討二維無限域異向性壓電材料,內含一電極與一橢圓孔洞受廣義曳引力作用下的互制行為。此問題之之分析可拆成兩個子問題疊加而成而成,子問題一為壓電材料內僅僅含單一橢圓孔洞,且在無窮遠處受廣義曳引力作用。子問題二為壓電材料內含一橢圓孔洞,但在電極位置則受到一未知的連續廣義分佈力作用。疊加子問題一與子問題二,並令電極位置之廣義應變和為零,則可建立對應原問題之柯西奇異型積分方程。此方程採用Gerasoulis (1982)的數值方法求得廣義曳引力,進而推得強度因子。廣義應力強度因子可分為開裂型、滑移型、撕裂型、電位移應力強度因子。文中針對不同的孔洞形狀、孔洞與電極尖端距離、受力方式以及電極傾斜的角度對廣義應力強度因子造成的影響進行討論。
This thesis is to investigate the electro-mechanical behavior of an electrode interacting with a hole in an infinite piezoelectric material. This problem can be analyzed by superposition of two simple problems. First problem is a piezoelectric material containing a hole under uniform traction at infinity. Second problem is a piezoelectric material containing a hole subjected to a distributed forces. By combining this two problems, we can obtain an equation matching the boundary condition of the original problem. We use Green’s function to describe the problem so that we can get a system of singular integral equations for the unknown distributed forces. Next, we use the numerical method to calculate the solutions of the singular integral equations and the generalized stress intensity factors (SIFs) at the electrode tips. This thesis considers the piezoelectric material under three different kinds of force. The influence of the distant between electrode and hole, the shape of elliptic hole, and the inclined angle of electrode on the SIFs are investigated and results are discussed.
[1] Ballarini, R., “An integral equation approach for rigid line inhomogeneity problems,” International Journal of Fracture, Vol. 33 pp. R23-R26 (1987).
[2] Chen, B. J., Shu, D. W., and Xiao, Z. M., “Electro-elastic interaction between a piezoelectric screw dislocation and collinear rigid lines,” International journal of engineering science, Vol. 44, No. 7, pp. 422-435 (2006).
[3] Chung, M. Y., and Ting, T. C. T., “Piezoelectric solid with an elliptic inclusion or hole,” International Journal of Solids and Structures, Vol. 33, No. 23, pp. 3343-3361 (1996)
[4] Deng, W., and Meguid S. A. , “ Analysis of conducting rigid inclusion at the interface of two dissimilar piezoelectric materials,” Journal of applied mechanics, Vol.65, No. 1, pp. 76-84 (1998).
[5] Dong, C. Y., Lo, S. H., and Cheung, Y. K., “Interaction between cracks and rigid-line inclusions by an integral equation approach,” Computational mechanics, Vol.31, No.3- No.4, pp. 238-252 (2003).
[6] Dong, C. Y., Lo, S. H., and Cheung, Y. K., “Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium,” Computer methods in applied mechanics and engineering, Vol.192, No. 5, pp. 683-696 (2003).
[7] Dunn, M. L., and Taya, M., “An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities,” In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences ,Vol. 443, No. 1918, pp. 265-287 (1993).
[8] Enab, T. A., “Stress concentration analysis in functionally graded plates with elliptic holes under biaxial loadings,” Ain Shams Engineering Journal, Vol.5, No. 3, pp. 839-850 (2014).
[9] England A. H., “On stress singularities in linear elasticity,” International Journal of Engineering, Vol. 9, pp. 571-585 (1971).
[10] England A. H., “Complex Variable Methods in Elastic”, Wiley, London, 1971
[11] Eshelby, J. D., “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proceedings of the Royal Society, A.,Vol. 241, pp. 376-396 (1957).
[12] Eshelby, J. D., “The elastic field outside an ellipsoidal inclusion,” Proceedings of the Royal Society, A., Vol. 252, pp. 561-569 (1959).
[13] Gao, C. F., and Fan, W. X., “ An interface inclusion between two dissimilar piezoelectric materials,” Applied Mathematics and Mechanics, Vol.22, No. 1, pp. 96-104 (2001).
[14] Gao, C. F., and Fan, W. X., “Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack,” International Journal of Solids and Structures, Vol.36, No. 17, pp. 2527-2540 (1999).
[15] Gerasoulis, A., “The use of piecewise quadratic polynomials for the solution of singular integral equations of Cauchy type,” Computational Mathematics with Applications, Vol. 8, No. 1, pp. 15-22 (1982).
[16] Guo, J. H., Lu, Z. X., Han, H. T., and Yang, Z., “Exact solutions for anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material,” International Journal of Solids and Structures, Vol.46, No. 21, pp. 3799-3809 (2009).
[17] Hufenbach, W., and Zhou, B., “Solutions for an anisotropic, finite plate with an elastic inclusion and a loaded boundary,” Composite structures, Vol.52, No. 2, pp. 161-166 (2001).
[18] Hwu, C., and Liao, C. Y., “ A special boundary element for the problems of multi-holes, cracks and inclusions,” Computers & structures, Vol.51, No. 1, pp. 23-31 (1994).
[19] Hwu, C., and Yen, W. J., “Green’s functions of two-dimensional anisotropic plates containing an elliptic hole. Int. J. Solids Struct, Vol.27, No. 13, pp. 1705-1719 (1991).
[20] Hwu, “Anisotropic elastic plate”, Springer US ,pp. 192-195 (2010)
[21] Kuna, M., “Finite element analysis of cracks in piezoelectric structures: a survey,” Archive of Applied Mechanics Vol. 76, pp. 725-745 (2006)
[22] Lekhnitskii, S. G., “Theory of elasticity of anisotropic elastic body.” Holden-Day, San Francisco, California (1963).
[23] Liang, J., Han, J., and Du, S., “Rigid line inclusions and cracks in anisotropic piezoelectric solids,” Mechanics research communications, Vol.22, No. 1, pp. 43-49 (1995).
[24] Liang, Y. C., and Sun, Y. P., “Hole/Crack Identification in Circular Piezoelectric Plates,” Procedia Engineering, Vol.79, 194-203 (2014).
[25] Li, Q., and Ting, T. C. T., “Line inclusions in anisotropic elastic solids,” Journal of applied mechanics, Vol. 56, No. 3, pp. 556-563 (1989).
[26] Li, X., “Electroelastic field induced by thin interface electrodes between two bonded dissimilar piezoelectric ceramics,” Science in China Series G: Physics, Mechanics and Astronomy, Vol.49, No. 5, pp. 526-539 (2006).
[27] Maugis, D., “Stresses and displacements around cracks and elliptical cavities: exact solutions,” Engineering fracture mechanics, Vol.43, No. 2, pp. 217-255 (1992).
[28] Muskhelishvili, N. I., “Singular Integral Equations: Boundary Problems of Function Theory and Their Applications to Mathematical Physics,” Dover Publications (1992).
[29] Pak, Y. E., “Crack extension force in a piezoelectric material,” Journal of Applied Mechanics, Vol. 57, No. 3, pp. 647-653 (1990).
[30] Pan, E., “A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids,” Engineering Analysis with Boundary Elements, Vol. 23, pp. 67-76 (1999).
[31] Pan, E., and Amadei, B., “Fracture mechanics analysis of cracked 2-D anisotropic media with a new formulation of the boundary element method,” International Journal of Fracture, Vol.77, No. 2, pp. 161-174 (1996).
[32] Pasternak, I., “Coupled 2D electric and mechanical fields in piezoelectric solids containing cracks and thin inhomogeneities,” Engineering Analysis with Boundary Elements, Vol.35, No. 4, pp. 678-690 (2011).
[33] Sosa, H., “Plane problems in piezoelectric media with defects,” International Journal of Solids and Structures, Vol.28, No. 4, pp. 491-505 (1991).
[34] Stroh, A. N., “Dislocations and cracks in anisotropic elasticity,” Philosophical Magazine, Vol. 3, pp. 625-646 (1958).
[35] Ting, T. C. T., “Anisotropic elasticity: theory and application,” Oxford University press (1996).
[36] Wang, B. B. L., Sun, Y. G., Han, J. C., & Du, S. Y., “ An interface electrode between two piezoelectric layers,” Mechanics of Materials, Vol.41, No. 1, pp. 1-11 (2009).
[37] Wang, Z. Y., Zhang, H. T., and Chou, Y. T., “Stress singularity at the tip of a rigid line inhomogeneity under antiplane shear loading,” Journal of applied mechanics, Vol.53, No. 2, pp.459-461 (1986).
[38] Weichen, S., “Rigid line inclusions under anti-plane deformation and in-plane electric field in piezoelectric materials,” Engineering fracture mechanics, Vol.56, No. 2, pp. 265-274 (1997).
[39] Wu, L., and Du, S., “A rigid line in a confocal elliptic piezoelectric inhomogeneity embedded in an infinite piezoelectric medium,” International journal of solids and structures, Vol.37, No. 10, pp. 1453-1469 (2000).
[40] Wu, L. Z., “A crack in a confocal elliptic piezoelectric inhomogeneity embedded in an infinite piezoelectric medium,” International journal of fracture, Vol.104, No. 1, pp. 1-14 (2000).
[41] 洪崇倫,裂紋與線剛性異質物之互制分析,國立成功大學土木工程研究所,2008。
[42] 莊祐霖,壓電材料內含孔洞與裂紋之互制分析,國立成功大學土木工程研究所,2015。
[43] 彭文彬,二維異向性裂紋交互作用之探討,碩士論文,國立成功大學土木工程研究所,2000。
[44] 楊秉順,雙層介面完全結合之壓電裂紋體解析,國立成功大學土木工程研究所,2008。
[45] 蔡育仁,二維異向性材料內含雙線剛性異質物之互制分析,國立成功大學土木工程研究所,2014。