簡易檢索 / 詳目顯示

研究生: 林學品
Lin, Hsueh-Pin
論文名稱: PVK緩衝層在n-ZnO/p-Cu2O薄膜異質接面光檢測特性的影響之研究
Study of PVK buffer layer effects on the performance of n-ZnO/p-Cu2O thin film heterojunction photodetectors
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 84
中文關鍵詞: 氧化鋅PVK氧化亞銅紫外光光二極體
外文關鍵詞: ZnO, PVK, Cu2O, ultraviolet, photodiode
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討PVK緩衝層對於氧化鋅/氧化亞銅異質接面光二極體表現之研究。首先,多晶的氧化亞銅薄膜電鍍在ITO的玻璃基板上,接著在氧化亞銅薄膜上旋轉塗佈PVK薄膜,定義好濺鍍於PVK薄膜上之氧化鋅晶種層後,再利用水浴法合成氧化鋅奈米柱陣列,PVK薄膜是用來當作電子阻擋/電洞傳輸層。掃描式電子顯微鏡和X光繞射儀用來對備製的元件進行表面形貌、薄膜界面、厚度與晶體結構之分析。
    接著,我進一步量測及分析PVK緩衝層對氧化鋅/氧化亞銅異質接面二極體光電特性之影響。在紫外光的照射下,氧化鋅/PVK/氧化亞銅和氧化鋅/氧化亞銅光二極體在-0.5 V偏壓下光暗電流比分別為133和3.99。此外,氧化鋅/氧化亞銅的紫外光-可見光拒斥比為1.735,而當有PVK層的情況下紫外光-可見光拒斥比被提升至350,主要歸功於有較高的紫外光電流放大以及產生低的可見光光電流。
    在上述的結果中,我發現幾個新穎的特徵:(a) 紫外光所產生的電洞載子能夠穿越PVK層傳輸至氧化亞銅層;(b) PVK緩衝層具有顯著地抑制逆偏漏電流,致使有較大的光電流放大效果;(c) 利用PVK層可改善紫外光對可見光拒斥比並達到高靈敏度的紫外光偵測能力。

    In this dissertation, I investigate the effects of a poly-(N-vinylcarbazole) (PVK) intermediate layer on the performance of n-ZnO nanorods/p-Cu2O heterojunction photodiodes. Polycrystalline p-Cu2O thin film was electrodeposited on a commercial available ITO/glass substrate. An organic PVK layer was then spin-coated onto the Cu2O film followed by ZnO nanorods synthesis on a patterned ZnO seed layer using a chemical bath deposition (CBD) method. The PVK layer acts as an electron blocking/hole transporting layer between the ZnO and the Cu2O films. Meanwhile, the ZnO/Cu2O heterojunction photodiodes without PVK layer was also fabricated for comparison. A scanning electron microscope was used to observe the surface morphologies and cross-sectional images of the samples. Crystalline phase and orientation were determined by x-ray diffraction patterns obtained from an x-ray diffractometer.
    To analyze the role of PVK, I measured the electrical and optical properties of the photodiodes. Under UV light illumination, the photocurrent/dark current ratios of the n-ZnO/PVK/p-Cu2O and n-ZnO/ p-Cu2O photodiodes at -0.5 V bias are 133 and 3.99, respectively. The n-ZnO/p-Cu2O exhibits a UV-to-visible rejection ratio (R-360nm/R-450nm) of approximately 1.735 under a -0.5V bias. When the PVK buffer layer is inserted between the n-ZnO and the p-Cu2O layers, the rejection ratio increase to 350 owing to higher UV photocurrent/dark current contrast ratio and lower photocurrent generation under visible light illumination.
    On the basis of above results, several novel features have been demonstrated for the first time: (a) UV photo-generated holes can effectively transmit through the PVK layer to the p-Cu2O layer; (b) insertion of a PVK buffer layer significantly minimize the reversed-bias leakage current, which leads to a large amplification of the photocurrent; and (c) the device with a PVK buffer layer can improve UV-visible responsivity ratio and achieves better UV detection sensitivity.

    摘要 I Abstract III Acknowledge V Contents VI Table captions IX Figure captions X Chapter 1 1 Introduction 1 §1.1 Background 1 §1.2 Review relevant ZnO, PVK and Cu2O properties 3 1.2.1 General properties of Cu2O 3 1.2.2 Material properties of poly-(N-vinylcarbazole) (PVK) thin film 4 1.2.3 ZnO nanorod array thin films as an absorber in solar-blind UV photodetectors 5 §1.3 Motivation 8 Chapter 2 14 Theory and Literature Reviews 14 §2.1 Metal-semiconductor contact 14 §2.2 p-n junction principles 14 2.2.1 A p-n junction under equilibrium and various bias conditions1 14 2.2.2 The series resistance (Rs) 16 §2.3 Semiconductor photodetector 18 2.3.1 Principle of operation 18 2.3.2 P-n junction photodiodes4 18 2.3.3 Photoconductive detectors 19 2.3.4 Responsivity and Detectivity 20 Chapter 3 25 Experimental Scheme 25 §3.1 Experimental materials 25 §3.2 Process equipment 25 3.2.1 Electrochemical deposition system 25 3.2.2 Spin coater 28 3.2.3 Square furnace 28 3.2.4 RF/DC sputtering system 29 §3.3 Analytical instruments 30 3.3.1 Scanning Electron Microscope (SEM) 30 3.3.2 X-ray Diffraction (XRD) 32 3.3.3 Photoluminescence (PL) 34 3.3.4 Electrical measurement system 35 §3.4 Experimental Flow 36 3.4.1 Indium-tin-oxide (ITO) coated glass substrate 36 3.4.2 Electrodeposition of p-Cu2O thin films 36 3.4.3 Spin-coated PVK layers 37 3.4.4 Sputtered i-ZnO thin films 37 3.4.5 ZnO nanorod arrays (NRAs) grown by chemical bath deposition 38 3.4.6 Sputtered transparent ITO top electrodes 38 Chapter 4 48 Results and Discussion 48 §4.1 The study and analysis of solar-blind ultraviolet 48 heterojunction photodiodes 48 §4.2 Growth and characterization of n-ZnO/PVK/p-Cu2O multi-layer thin films 49 4.2.1 X-ray diffraction patterns of stacked films 49 4.2.2 Observations of surface morphology of Cu2O and ZnO thin films and cross-sectional view 50 4.2.3 Photoluminescence analysis of photodiodes with and without PVK buffer layers 52 §4.3 Electrical measurement 53 §4.4 Photoresponse and detectivity 56 Chapter 5 73 Conclusions 73 Chapter 6 74 References 74

    § References in Chapter 1
    [1] Masako Sasaki, Shu Takeshita, Masahisa Sugiura, Noriko Sudo, Yukiharu Miyake, Yoshiya Furusawa, and Toshibumi Sakata."Ground-Based Observation of Biologically Active Solar Ultraviolet-B Irradiance at 35. DEG. N Latitude in Japan." Journal of geomagnetism and geoelectricity, 45(6), (1993), pp.473-485.
    [2] Franck Omnès, Eva Monroyb, Elias Muñozc, and Jean-Luc Reverchond. "Wide bandgap UV photodetectors: A short review of devices and applications." Integrated Optoelectronic Devices 2007. International Society for Optics and Photonics, 2007.
    [3] Do Young Kim, Jiho Ryu, Jesse Manders, Jaewoong Lee, and Franky So. "Air-stable, solution-processed oxide p–n heterojunction ultraviolet photodetector." ACS applied materials & interfaces, 6(3) (2014), pp.1370-1374.
    [4] Oleg Lupan, Lee Chow, Guangyu Chai, Leonid Chernyak, Olena Lopatiuk-Tirpak, and Helge Heinrich. " Focused-ion-beam fabrication of ZnO nanorod-based UV photodetector using the in-situ lift-out technique." Physica status solidi. A, Applied research, 205(11) (2008), pp.2673.
    [5] Liao Meiyong, Yasuo Koide, and Jose Alvarez. "Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact." Applied Physics Letters, 87(2) (2005), pp. 022105-022105.
    [6] Östlund Ludwig, Qin Wang, Romain Esteve, Susanne Almqvist, David Rihtnesberg, Sergey Reshanov, Andy Z. Z. Zhang, Jang-Kwon Lim, Mietek Bakowski, Adolf Schöner, and Wlodek Kaplan. "4H‐and 6H‐SiC UV photodetectors." physica status solidi (c) ,9(7) (2012), pp.1680-1682.
    [7] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz , and M. Razeghi. "High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN." Applied physics letters, 74(5) (1999), pp.762-764.
    [8] Fawen Guo, Bin Yang, Yongbo Yuan, Zhengguo Xiao, Qingfeng Dong, Yu Bi, and Jinsong Huang. "A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection." Nature nanotechnology, 7(12) (2012), pp.798-802.
    [9] Yun-Yue Lin, Chun-Wei Chen, Wei-Che Yen, Wei-Fang Su, Chen-Hao Kuand, and Jih-Jen Wu. "Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes." Applied Physics Letters, 92(23) (2008), pp. 233301-233301.
    [10] Hatch, Sabina M, Joe Briscoe, and Steve Dunn. "A Self‐Powered ZnO‐Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response." Advanced Materials,25(6) (2013), pp.867-871.
    [11] Yannan Xie, Huolin Huang, Weifeng Yang, and Zhengyun Wu. "Low dark current metal-semiconductor-metal ultraviolet photodetectors based on sol-gel-derived TiO2 films." Journal of Applied Physics, 109(2) (2011), pp.023114-023114.
    [12] Yoshihiro Kokubun, Kasumi Miura, Fumie Endo, and Shinji Nakagomi. "Sol-gel prepared β-Ga 2O3 thin films for ultraviolet photodetectors." Applied physics letters, 90(3) (2007), pp. 031912-031912.
    [13] Hao Chen, Linfeng Hu, Xiaosheng Fang, and Limin Wu. "General Fabrication of Monolayer SnO2 Nanonets for High‐Performance Ultraviolet Photodetectors." Advanced Functional Materials, 22(6) (2012),pp. 1229-1235.
    [14] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul, and T. Sakurai. "Thin film deposition of Cu2O and application for solar cells." Solar energy, 80(6) (2006), pp.715-722.
    [15] Fujimoto, Kazuya, Takeo Oku, and Tsuyoshi Akiyama. "Fabrication and characterization of ZnO/Cu2O solar cells prepared by electrodeposition." Applied Physics Express, 6(8)(2013), pp. 086503.
    [16] Musa, A. O, T. Akomolafe, and M. J. Carter. "Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties." Solar Energy Materials and Solar Cells, 51(3) (1998), pp.305-316.
    [17] Jonas Deuermeier, Jürgen Gassmann, Joachim Brötz, and Andreas Klein. "Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide." Journal of Applied Physics, 109(11) (2011), pp.113704.
    [18] Jaeyoung Lee and Yongsug Tak. "Epitaxial Growth of Cu2O (111) by Electrodeposition." Electrochemical and solid-state letters, 2(11) (1999), pp.559-560.
    [19] Qing Hua, Daili Shang, Wenhua Zhang, Kai Chen, Sujie Chang, Yunsheng Ma , Zhiquan Jiang, Jinlong Yang, and Weixin Huang . "Morphological evolution of Cu2O nanocrystals in an acid solution: stability of different crystal planes." Langmuir, 27(2) (2010), pp.665-671.
    [20] Kunfeng Chen, Congting Sun, and Dongfeng Xue. "Morphology engineering of high performance binary oxide electrodes." Physical Chemistry Chemical Physics, 17(2) (2015), pp. 732-750.
    [21] S. Ishizuka, S. Kato, Y. Okamoto, and K. Akimoto. "Hydrogen treatment for polycrystalline nitrogen-doped Cu2O thin film." Journal of crystal growth, 237 (2002), pp.616-620.
    [22] J. C Bernede, H. Derouiche, and V. Djara. "Organic photovoltaic devices: influence of the cell configuration on its performences." Solar energy materials and solar cells, 87(1) (2005), pp.261-270.
    [23] Lei Wang, Bo Liang, Fei Huang, Junbiao Peng, and Yong Cao. "Utilization of water/alcohol-soluble polyelectrolyte as an electron injection layer for fabrication of high-efficiency multilayer saturated red-phosphorescence polymer light-emitting diodes by solution processing." Applied physics letters, 89(15) (2006), pp.151115.
    [24] Wenge Yua, Zheng Xua, Feng Tenga, Shengyi Yanga, Yanbing Houa, Lei Qiana, Chong Qua, Sanyu Quana, and Xurong Xua. "Blue electroluminescence of ZnSe thin film in an organic–inorganic heterostructures device." Physics Letters A, 338(3) (2005), pp.402-406.
    [25] YS Lai, CH Tu, DL Kwong, and JS Chen. "Charge-transport characteristics in bistable resistive poly (N-vinylcarbazole) films." Electron Device Letters, IEEE, 27(6) (2006), pp.451-453.
    [26] S. Ben Dkhila, J. Davenasb, R. Bourguigaa, and D. Cornuc. "Effect of thermal treatments on the properties of PVK/silicon nanowires films for hybrid solar cells." Synthetic Metals, 161(17) (2011), pp.1928-1933.
    [27] Xiong Gong, Minghong Tong, Yangjun Xia, Wanzhu Cai, Ji Sun Moon, Yong Cao, Gang Yu, Chan-Long Shieh, Boo Nilsson, and Alan J. Heeger. "High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm." Science, 325(5948) (2009), pp.1665-1667.
    [28] Jia Gao, Han You, Zhi-Pei Qin, Junfeng Fang, Dongge M, Xuhui Zhu, and Wei Huang. "High efficiency polymer electrophosphorescent light-emitting diodes." Semiconductor science and technology, 20(8) (2005), pp.805.
    [29] Wei Wua, Junxin Lia, Luqi Liua, Liangming Yanga, Zhi-Xin Guoa, Liming Daia, and Daoben Zhua. "The photoconductivity of PVK-carbon nanotube blends." Chemical physics letters, 364(1) (2002), pp.196-199.
    [30] Zhao, Xinhong, Peng Wang, and Baojun Li. "CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application." Chemical Communications, 46(36) (2010), pp.6768-6770.
    [31] Henk J. Bolink, Eugenio Coronado, Diego Repetto, and Michele Sessolo. "Air stable hybrid organic-inorganic light emitting diodes using ZnO as the cathode." Applied Physics Letters, 91(22) (2007), pp.223501.
    [32] Changzeng Fan, Qiang Wang, Lixiang Li, Suhong Zhang, Yan Zhu, Xinyu Zhang, Mingzhen Mak,Riping Liu, and Wenkui Wang . "Bulk moduli of wurtzite, zinc-blende, and rocksalt phases of ZnO from chemical bond method and density functional theory." Applied Physics Letters, 92(10) (2008), pp.101917.
    [33] S.J. Peartona, D.P. Nortona, K. Ipa, Y.W. Heoa, and T. Steinerb. "Recent progress in processing and properties of ZnO." Progress in materials science, 50(3) (2005), pp.293-340.
    [34] Lin, Bixia, Zhuxi Fu, and Yunbo Jia. "Green luminescent center in undoped zinc oxide films deposited on silicon substrates." Applied Physics Letters, 79(7) (2001), pp.943-945.
    [35] B. J Coppa, R. F. Davis, and R. J. Nemanich. "Gold Schottky contacts on oxygen plasma-treated, n-type ZnO (0001)." Applied physics letters, 82(3) (2003), pp.400-402.
    [36] Atsushi Tsukazaki, Akira Ohtomo, Takeyoshi Onuma, Makoto Ohtani, Takayuki Makino, Masatomo Sumiya, Keita Ohtani, Shigefusa F. Chichibu, Syunrou Fuke, Yusaburou Segawa, Hideo Ohno, Hideomi Koinuma, and Masashi Kawasak. "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO." Nature materials, 4(1) (2005), pp.42-46.
    [37] M. Wei, R. C. Boutwell, J. W. Mares, A. Scheurer, and W. V. Schoenfeld. "Bandgap engineering of sol-gel synthesized amorphous Zn1-xMgxO films." Applied Physics Letters, 98(26) (2011), pp.261913.
    [38] Bingqiang Cao and Weiping Cai. "From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions." The Journal of Physical Chemistry C, 112(3) (2008), pp.680-685.
    [39] C. Soci , A. Zhang , B. Xiang , S. A. Dayeh , D. P. R. Aplin , J. Park , X. Y. Bao , Y. H. Lo , and D. Wang . "ZnO nanowire UV photodetectors with high internal gain." Nano letters, 7(4)(2007), pp.1003-1009.
    [40] G. T. Du, W. F. Liu, J. M. Bian, L. Z. Hu, H. W. Liang, X. S. Wang, A. M. Liu, and T. P. Yang. "Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis." Applied physics letters, 89(5) (2006), pp.052113-052113.
    [41] Dung-Sheng Tsai, Chin-An Lin, Wei-Cheng Lien, Hung-Chih Chang, Yuh-Lin Wang, and Jr-Hau He. "Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays." ACS nano, 5(10) (2011), pp.7748-7753.
    [42] In-Seok Seoa, In-Hwan Leea, Yong-Jo Parkb, and Cheul-Ro Leea. "Characteristics of UV photodetector fabricated by Al0.3Ga 0.7 N/GaN heterostructure." Journal of crystal growth, 252(1) (2003), pp. 51-57.
    [43] L.J. Mandalapu, F.X. Xiu, and Z. Yang, J.L. Liu. "Ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy." Solid-state electronics, 51(7) (2007), pp.1014-1017.
    [44] Feng Yan, Xiaobin Xin, Aslam S, Yuegang Zhao, Franz D, Zhao J.H, and Weiner, M "4H-SiC UV photo detectors with large area and very high specific detectivity."Quantum Electronics, IEEE Journal of, 40(9) (2004),pp.1315-1320.
    [45] Kunfeng Chen, Congting Sun, Shuyan Song, and Dongfeng Xue. "Polymorphic crystallization of Cu 2 O compound." CrystEngComm,16(24) (2014), pp.5257-5267.
    § References in chapter 2
    [1] S. O. Kasap, " Optoelectronics and Photonics Principles and Practices, " Prentice Hall, (2001)
    [2] S. M. Sze, "Semiconductor Device Physics and Technology, " Wiley, (1985), pp.278
    [3] S. M. Sze, D. J. Coleman, and A. Loya. "Current transport in metal-semiconductor-metal structures." Solid-State Electronics, 14(12), (1971), pp.1209-1218.
    [4] S. M. Sze and K. K. Ng, "Physics of Semiconductor Devices." 3^rd ed., John Wiley & Sons, (2007).
    [5] OHL, Russell S. "Light-sensitive electric device." U.S. Patent No 2,402,662, 1946.
    [6] Michael Riordan and Lillian Hoddeson. "The origins of the pn junction." Spectrum, IEEE, 34(6) (1997), pp.46-51.
    [7] Xiong Gong, Minghong Tong, Yangjun Xia, Wanzhu Cai, Ji Sun Moon, Yong Cao, Gang Yu, Chan-Long Shieh, Boo Nilsson, and Alan J. Heeger. "High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm." Science, 325(5948) (2009), pp.1665-1667.
    § References in chapter 3
    [1] Bard, Allen J and Larry R. Faulkner. "Electrochemical methods: fundamentals and applications. "〖 2〗^nd ed., John Wiley & Sons, New York,(2000).
    [2] K. Wetzig and C. M. Schneider. "Metal based thin films for electronics." 2^nd ed., Wiley-VCH, Weinheim
    [3] S.A. Campbell."The science and Engineering of Microelectronic Fabrication." 2^nd ed., John Wiley & Sons, New York, (2000).
    [4] M. Birkholz, P. F. Fewster, and C. Genzel. "Thin film analysis by X-ray scattering." Wiley-VCH, Weinheim, (2006).
    [5] T.H. Gfroerer. "Photoluminescence in Analysis of Surfaces and Interfaces." John Wiley & Sons Ltd, Chischester, (2000).
    [6] Qingwei Lia, Jiming Biana , Jingchang Sunb, Jingwei Wanga, Yingmin Luoa, Kaitong Suna, Dongqi Yub. "Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method." Applied Surface Science, 256.6 (2010), pp.1698-1702.
    § References in chapter 4
    [1] S. Senda, H. Jiang, and T. Egawa. "AlInN-based ultraviolet photodiode grown by metal organic chemical vapor deposition." Applied Physics Letters, 92(20) (2008), pp.203507.
    [2] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, and K. Evans. "GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition." Applied physics letters, 89(1) (2006), pp.011112.
    [3] Hong-Liang Lu,Yu-Zhu Gu, Yuan Zhang, Xin-Yan Liu, Peng-Fei Wang, Qing-Qing Sun, Shi-Jin Ding, and David Wei Zhang."Improved photoelectrical properties of n-ZnO/p-Si heterojunction by inserting an optimized thin Al2O3 buffer layer." Optics express, 22(18) (2014), pp.22184-22189.
    [4] T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, and X. L. Du. "Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si." Applied Physics Letters, 94(11) (2009), pp.113508-113508.
    [5] Wei Wang, Chao Chen, Guozhen Zhang, Ti Wang, Hao Wu, Yong Liu, and Chang Liu. "The function of a 60-nm-thick AlN buffer layer in n-ZnO/AlN/p-Si (111)." Nanoscale research letters, 10(1) (2015), pp.1-7.
    [6] Yueh-Hsun Leea, Ing-Chi Leub, Cheng-Lung Liaoa, and Kuan-Zong Funga,. "The structural evolution and electrochemical properties of the textured Cu2O thin films." Journal of alloys and compounds, 436(1) (2007), pp.241-246.
    [7] P. D’Angeloa, M. Barraa, A. Cassinesea, M.G. Maglioneb, P. Vaccac, and C. Minarinic, A. Rubinod. "Electrical transport properties characterization of PVK (poly N-vinylcarbazole) for electroluminescent devices applications." Solid-state electronics 51(1) (2007), pp.123-129.
    [8] Yingchi Liu, Hubert K. Turley, John R. Tumbleston, Edward T. Samulski, and Rene Lopez l."Minority carrier transport length of electrodeposited Cu2O in ZnO/Cu2O heterojunction solar cells." Applied Physics Letters, 98(16) (2011), pp. 162105-162105.
    [9] Dali Shao, Mingpeng Yu, Jie Lian, and Shayla Sawyer. "Heterojunction photodiode fabricated from multiwalled carbon nanotube/ZnO nanowire/p-silicon composite structure." Applied Physics Letters, 102(2) (2013), pp.021107.
    [10] D.K Zhanga, Y.C Liua, Y.L Liub, and H Yanga. "The electrical properties and the interfaces of Cu2O/ZnO/ITO p–i–n heterojunction."Physica B: Condensed Matter, 351(1) (2004), pp.178-183.
    [11] H. M. Wei , H. B. Gong , L. Chen , M. Zi , and B. Q. Cao. "Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure." The Journal of Physical Chemistry C, 116(19) (2012), pp.10510-10515.
    [12] Xiong Gong, Minghong Tong, Yangjun Xia, Wanzhu Cai, Ji Sun Moon, Yong Cao, Gang Yu, Chan-Long Shieh, Boo Nilsson, and Alan J. Heeger. "High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm." Science, 325(5948) (2009), pp.1665-1667.
    [13] Jun Zhou, Yudong Gu, Youfan Hu, Wenjie Mai, Ping-Hung Yeh, Gang Bao, Ashok K. Sood, Dennis L. Polla, and Zhong Lin Wang. "Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization." Applied Physics Letters, 94(19) (2009), pp.191103.
    [14] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park , X. Y. Bao, Y. H. Lo , and D. Wang. "ZnO nanowire UV photodetectors with high internal gain." Nano letters,7(4) (2007),pp.1003-1009.

    無法下載圖示 校內:2020-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE