研究生: |
盧彥文 Lu, Yen-Wen |
---|---|
論文名稱: |
水熱法製備純相及銻摻雜鐵酸鉍之研究 The study on pure and Sb-doped BiFeO3 synthesized by hydrothermal process |
指導教授: |
齊孝定
Qi, Xiao-Ding |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 鐵酸鉍 、水熱法 、磊晶 、鐵電性 、電滯迴線 |
外文關鍵詞: | bismuth ferrite, hydrothermal, epitaxy, ferroelectric,hysteresis loops |
相關次數: | 點閱:99 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多鐵性材料鐵酸鉍(BiFeO3, BFO)的居禮溫度(Tc)與尼爾溫度(TN)遠高於室溫,同時具有極大的鐵電極化量(約100 μC/cm2),因此在元件應用上具有相當潛力,如鐵電隨機存取記憶體(ferroelectric RAM, FeRAM)。然而雜相和氧空缺的存在以及陽離子容易變價(如:Fe3+/Fe2+和Bi3+/Bi2+)的問題導致BFO的漏電流相當大,限制其應用上的發展,其中透過摻雜是改善BFO性能的方法之一。
本研究主要以水熱法製備BiFe1-xSbxO3 (x=0-0.02)粉體,為了提高塊材密度及後續性質量測,製備之粉體經壓錠後在大氣下以700oC燒結,最後將燒結樣品與冷壓樣品進行一系列分析並討論比較。另一部分則是在(001)取向的Nb:SrTiO3 (Nb:STO)單晶導電基板成長BiFe1-xSbxO3(x=0-0.02)磊晶厚膜,以利電滯迴線分析。整體成果概述如下。XRD結果顯示純相之BiFe1-xSbxO3 (x=00.02)粉體成功以水熱法製備得到,且粉體經過高溫燒結後並無明顯雜相生成。為了得知冷壓後和燒結後的BiFe1-xSbxO3 (x=0-0.02)樣品之晶格常數變化,樣品透過TOPAS軟體進行晶格常數與原子位置精修,結果顯示鈣鈦礦結構BFO的晶體扭曲程度是隨著Sb摻雜量增加而下降。拉曼結果顯示Sb原子是取代BFO中的Fe原子位置。XPS分析結果顯示未摻雜BFO經過燒結後Fe2+/Fe3+的比例從6.6/93.4 增加到 25.7/74.3,其電導率約提升5個數量級,從1.2x10-7 提升到 1.8x10-2 S/cm (550 K時)。在2%銻摻雜的BFO樣品中,Sb元素在燒結前的價數為3+;然而部分Sb5+在燒結後生成,並且抑制大量Fe2+的出現,因此2%銻摻雜BFO的樣品在燒結前後,其電導率僅從1.7x10-6 些微提升至 4.2x10-6 S/cm (550 K時)。對於上述樣品的氧空缺電荷補償機制,未摻雜BFO在燒結後主要是以Fe3+還原成Fe2+為主,而銻摻雜BFO經燒結後主要是以形成更多陽離子空缺佔主導機制。將純相及銻摻雜BFO樣品的電導率隨溫度變化曲線由阿瑞尼斯方程(Arrhenius equation)擬合得知,純相及銻摻雜BFO燒結前之活化能為1 eV左右,相當於氧空位捕獲(trap)電子後經受熱激發之能量。有趣的是,銻摻雜BFO在燒結後的活化能仍維持在1 eV左右,而未摻雜BFO在燒結後的活化能轉變為0.4 eV,屬於Fe2+/Fe3+之間的電子跳躍(hopping)能量。TEM選區繞射結果證實,純相與銻摻雜BFO的繞射點皆能對應到BFO之結晶面且和XRD分析結果相符。此外亦透過TEM的EDS分析證實Sb元素僅能在銻摻雜BFO的樣品中被偵測到。XRD theta-2theta分析結果顯示純相及銻摻雜BFO樣品只有觀察到(00l)繞射峰(l=1, 2, 3),表示其晶粒是沿著c軸生長。另外以BFO的(011)繞射面做XRD φ-scans分析,其結果符合四軸對稱性,證明純相及銻摻雜BFO是以磊晶成長在Nb:STO基板上。未摻雜和1%銻摻雜BFO的厚膜具有典型的電滯迴線,其殘餘極化量分別為45和40 μm/cm2。
Among all multiferroic materials studied so far, BiFeO3 (BFO) is a single-phase multiferroic material, which is simultaneously ferroelectric and antiferromagnetic at room temperature. BFO is most promising from the practical application point of view due to its high ferroelectric Curie (TC=1103 K) and Néel (TN=643 K) temperatures and its large saturated polarization of about 100 μC/cm2. However, so far, bulk samples have failed to show interesting results of ferroelectric properties due to the poor quality of samples, in particular the large leakage current arising from a number of problems including the presence of many secondary phases, and the coexistence of mixed oxidation states of the cations (e.g. Fe3+/Fe2+ and Bi3+/Bi2+). The aim of this study was to hydrothermally synthesize Sb-doped BFO powders and thick films and then study the changes of crystal structure as well as the electrical and ferroelectric properties of BiFe1-xSbxO3 (x=0-0.02). Both cold-pressed and sintered pellets of the powders were used for characterizations.
The X-ray diffraction (XRD) results showed that BiFe1-xSbxO3 (x=0-0.02) powders of a pure phase were successfully synthesized by hydrothermal process. Furthermore, the crystal structures of BiFe1 xSbxO3 were refined using TOPAS software, which indicated that the Sb doping resulted in a reduced rhombohedral distortion of BFO from the ideal perovskite structure. Raman measurements were in favor of the assumption that the substitution of Sb at the Fe site in BFO. X-ray photoelectron spectroscopy (XPS) results showed a significant increase in the Fe2+/Fe3+ ratio from 6.6/93.4 to 25.7/74.3 in un-doped BFO after sintering and, as a consequence, the DC conductivity increased by about five orders of magnitude, from 1.2x10-7 to 1.8x10-2 S/cm (measured at 550 K). The Sb ions had a single 3+ oxidation state in the cold-pressed samples of 2% Sb-doped BFO, but a fairly large portion of Sb5+ occurred after sintering, which suppressed the formation of Fe2+ in the sintered samples of Sb-doped BFO and, as a consequence, there were only small increases in conductivity, from 1.7x10-6 to 4.2x10-6 S/cm (measured at 550 K). So, charge compensation for oxygen vacancies in un-doped BFO was achieved dominantly by the reduction of Fe3+ to Fe2+, while in Sb-doped BFO it was achieved more by cation vacancies. Temperature-dependent conductivity showed that cold-pressed samples of both un-doped and Sb-doped BFO had the similar activation energy of 1.0 eV, typical for electrons trapped in oxygen vacancies. After sintering, the activation energy of Sb-doped BFO remained almost unchanged, but the activation energy of un-doped BFO changed to 0.4 eV, which is associated to electron hopping between Fe2+/Fe3+. The sharp spots in selected area electron diffraction (SAED) patterns indicated that both un-doped and Sb-doped BFO powders are well crystallized. Moreover, EDS analyses confirmed that the Sb element is indeed present in the doped sample, whereas in the un-doped sample it is absent. XRD theta-2theta and φ scans of un-doped and 2% Sb-doped BFO thick films were performed to ensure the epitaxy on (001) Nb:SrTiO3 (Nb:STO) substrate. XRD theta-2theta scans showed that only the (00l) reflections (pseudocubic indices, l=1, 2, 3) were observed, indicating a unique out-of-plane orientation. In addition, XRD φ scans of (011) reflection showed only four peaks, matching with the four-fold rotation symmetry and, hence, confirming that the grains are in-plane aligned as well. So, the thick films grown on (001) Nb:STO are actually epitaxial. Ferroelectric measurements showed saturated hysteresis loops with the typical shape for ideal ferroelectrics. Large remanent polarizations were measured at room temperature, which were 45 and 40 μC/cm2 for the un-doped and 1% Sb-doped BFO, respectively.
1. G. Catalan and J. F. Scott, ‘‘Physics and applications of bismuth ferrite,’’ Adv. Mater., 21, 2463–2485 (2009).
2. H. Palneedi, V. Annapureddy, S. Priya, J. Ryu, ‘‘Status and perspectives of multiferroic magnetoelectric composite materials and applications,’’ Actuators, 5, 9 (2016).
3. M. Bibes and A. Barthélémy, ‘‘Towards a magnetoelectric memory,’’ Nature Mater., 7, 425–426 (2008).
4. L. Zhang, J. Chen, L. Fan, Z. Pan, J. Wang, K. Ibrahim, J. Tian, and X. Xing, ‘‘Enhanced switchable photovoltaic response and ferromagnetic of Co-doped BiFeO3 based ferroelectric thin films,’’ J. Alloys Compd., 742, 351–355 (2018).
5. N. Jeon, D. Rout, I. W. Kim, and S. J. L. Kang, ‘‘Enhanced multiferroic properties of single-phase BiFeO3 bulk ceramics by Ho doping,’’ Appl. Phys. Lett., 98, 072901 (2011).
6. X. Qi, W. C. Chang, J. C. Kuo, I. G. Chen, Y. C. Chen, C. H. Ko, and J. C. A. Huang, ‘‘Growth and characterisation of multiferroic BiFeO3 films with fully saturated ferroelectric hysteresis loops and large remanent polarisations,’’ J. Eur. Ceram. Soc., 30, 283–287 (2010).
7. T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J. L. Jones, J. E. Daniels, and D. Damjanovic, ‘‘BiFeO3 ceramics: processing, electrical, and electromechanical properties,’’ J. Am. Ceram. Soc., 97, 1993–2011 (2014).
8. Q. Q. Ke, X. J. Lou, Y. Wang, and J. Wang, ‘‘Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric film,’’ Phys. Rev. B, 82, 024102 (2010).
9. T. Rojac, M. Kosec, B. Budic, N. Setter, and D. Damjanovic, ‘‘Strong ferroelectric domain-wall pinning in BiFeO3 ceramics,’’ J. Appl. Phys., 108, 074107 (2010).
10. S. M. Selbach, M. A. Einarsrud, and T. Grande, ‘‘On the thermodynamic stability of BiFeO3,’’ Chem. Mater., 21, 169–173 (2009).
11. M. A. Einarsrud and T. Grande, ‘‘1D oxide nanostructures from chemical solutions,’’ Chem. Soc. Rev., 43, 2187–2199 (2014).
12. S. Z. Lu, X. Qi, ‘‘Magnetic and dielectric properties of nanostructured BiFeO3 prepared by sol-gel method,’’ J. Am. Ceram. Soc., 97, 2185–2194 (2014).
13. T. Tong, J. Chen, D. Jin, and J. Cheng, ‘‘Preparation and gas sensing characteristics of BiFeO3 crystallites,’’ Mater. Lett., 197, 160–162 (2017).
14. H. Y. Si, W. L. Lu, J. S. Chen, G. M. Chow, X. Sun, and J. Zhao, ‘‘Hydrothermal epitaxial multiferroic BiFeO3 thick film by addition of the PVA,’’ J. Alloys Compd., 577, 44–48 (2013).
15. L. Jin, F. Li, and S. Zhang, ‘‘Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures,’’ J. Am. Ceram. Soc., 97, 1–27 (2014).
16. R. W. Munn, ‘‘Theory of piezoelectricity, electrostriction, and pyroelectricity in molecular crystals,’’ J. Chem. Phys., 132, 104512 (2010).
17. P. Marton, I. Rychetsky, and J. Hlinka, ‘‘Domain walls of ferroelectric BaTiO3 within the Ginzburg-Landau-Devonshire phenomenological model,’’ Phys. Rev. B, 81, 144125 (2010).
18. G. H. Haertling, ‘‘Ferroelectric ceramics: history and technology,’’ J. Am. Ceram. Soc., 82, 797–818 (1999).
19. R. Tararam, I. K. Bdikin, N. Panwar, J. A. Varela, P. R. Bueno, and A. L. Kholkin, ‘‘Nanoscale electromechanical properties of CaCu3Ti4O12 ceramics,’’ J. Appl. Phys., 110, 052019 (2011).
20. J. Guyonnet, Ferroelectric domain walls: statics, dynamics, and functionalities revealed by atomic force microscopy, (Springer, Switzerland, 2014).
21. V. M. Goldschmidt, ‘‘Die gesetze der krystallochemie,’’ Naturwissenschaften, 14, 477–485 (1926).
22. S. Karimi, I. M. Reaney, Y. Han, J. Pokorny, and I. Sterianou, ‘‘Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics,’’ J. Mater. Sci., 44, 5102–5112 (2009).
23. A. Reyes, C. Vega, Ma. E. Fuentes, and L. Fuentes, ‘‘BiFeO3: synchrotron radiation structure refinement and magnetoelectric geometry,’’ J. Eur. Ceram. Soc., 27, 3709–3711 (2007).
24. T. Shimada, T. Matsui, T. Xu, K. Arisue, Y. Zhang, J. Wang, and T. Kitamura, ‘‘Multiferroic nature of intrinsic point defects in BiFeO3: A hybrid Hartree-Fock density functional study,’’ Phys. Rev. B, 93, 174107 (2016).
25. F. Kubel and H. Schmid, ‘‘Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3,’’ Acta Cryst., B 46, 698–702 (1990).
26. A. M. Kadomtseva, Yu. F. Popov, A. P. Pyatakov, G. P. Vorob’ev, A. K. Zvezdin, and D. Viehland, ‘‘Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’,’’ Phase Transitions, 79, 1019–1042 (2006).
27. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, ‘‘Theoretical investigation of magnetoelectric behavior in BiFeO3,’’ Phys. Rev. B, 74, 224412 (2006).
28. D. Khomskii, ‘‘Classifying multiferroics: mechanisms and effects,’’ Phys., 2, 20 (2009).
29. J. R. Teague, R. Gerson, and W. J. James, ‘‘Dielectric hysteresis in single crystal BiFeO3,’’ Solid State Commun., 8, 1073–1074 (1970).
30. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, ‘‘Epitaxial BiFeO3 multiferroic thin film heterostructures,’’ Science, 299, 1719–1722 (2003).
31. D. Lebeugle, D. Colson, A. Forget, and M. Viret, ‘‘Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields,’’ Appl. Phys. Lett., 91, 022907 (2007).
32. K. Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata, and K. Saito, ‘‘Structural and multiferroic properties of BiFeO3 thin films at room temperature,’’ J. Appl. Phys., 96, 3399 (2004).
33. C. Ederer and N. A. Spaldin, ‘‘Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics,’’ Phys. Rev. Lett., 95, 257601 (2005).
34. Z. Yan, K. F. Wang, J. F. Qu, and Y. Wang, ‘‘Processing and properties of Yb-doped BiFeO3 ceramics,’’ Appl. Phys. Lett., 91, 082906 (2007).
35. N. Jeon, D. Rout, I. W. Kim, and S. J. L. Kang, ‘‘Enhanced multiferroic properties of single-phase BiFeO3 bulk ceramics by Ho doping,’’ Appl. Phys. Lett., 98, 072901 (2011).
36. B. Yu, M. Li, J. Liu, D. Guo, L. Pei, and X. Zhao, ‘‘Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics,’’ J. Phys. D: Appl. Phys., 41, 065003 (2008).
37. Z. Hu, M. Li, Y. Yu, J. Liu, L. Pei, J. Wang, X. Liu, B. Yu, and X. Zhao, ‘‘Effects of Nd and high-valence Mn co-doping on the electrical and magnetic properties of multiferroic BiFeO3 ceramics,’’ Solid State Commun., 150, 1088–1091 (2010).
38. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. -M. Liu, and Z. G. Liu, ‘‘Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering,’’ Appl. Phys. Lett., 84, 1731–1733 (2004).
39. I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, ‘‘Spiral magnetic ordering in bismuth ferrite,’’ J. Phys. C: Solid State Phys., 15, 4835–4846 (1982).
40. L. W. Martin, S. P. Crane, Y. H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke, and R. Ramesh, ‘‘Multiferroics and magnetoelectrics: thin films and nanostructures,’’ J. Phys.: Condens. Matter, 20, 434220 (2008).
41. R. Moubah, M. Elzo, S. EI Moussaoui, D. Colson, N. Jaouen, R. Belkhou, and M. Viret, ‘‘Direct imaging of both ferroelectric and antiferromagnetic domains in multiferroic BiFeO3 single crystal using x-ray photoemission electron microscopy,’’ Appl. Phys. Lett., 100, 042406 (2012).
42. Y. K. Jun, W. T. Moon, C. M. Chang, H. S. Kim, H. S. Ryu, J. W. Kim, K. H. Kim, and S. H. Hong, ‘‘Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics,’’ Solid State Commun., 135, 133–137 (2005).
43. X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, ‘‘Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3,’’ Appl. Phys. Lett., 86, 062903 (2005).
44. C. H. Park, ‘‘Microscopic study on migration of oxygen vacancy in ferroelectric perovskite oxide,’’ J. Korean Phys. Soc., 42, S1420–S1424 (2003).
45. S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, and S. Maensiri, ‘‘Dielectric relaxations and dielectric response in multiferroic BiFeO3 ceramics,’’ Appl. Phys. Lett., 94, 062904 (2009).
46. N. Masó and A. E. West, ‘‘Electrical properties of Ca-doped BiFeO3 ceramics: from p-type semiconduction to oxide-ion conduction,’’ Chem. Mater., 24, 2127–2132 (2012).
47. N. Orlovskaya and N. Browning, Mixed ionics electronics conducting perovskites for advanced energy systems, (Springer, Amsterdam, 2003).
48. T. Rojac, M. Kosec, B. Budic, N. Setter, and D. Damjanovic, ‘‘Strong ferroelectric domain-wall pinning in BiFeO3 ceramics,’’ J. Appl. Phys., 108, 074107 (2010).
49. Z. Zhang, P. Wu, L. Chen, and J. Wang, ‘‘Density functional theory plus U study of vacancy formations in bismuth ferrite,’’ Appl. Phys. Lett., 96, 232906 (2010).
50. T. R. Paudel, S. S. Jaswal, and E. Y. Tsymbal, ‘‘Intrinsic defects in multiferroic BiFeO3 and their effect on magnetism,’’ Phys. Rev. B, 85, 104409 (2012).
51. C. L. Hsiao and X. Qi, ‘‘The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides,’’ Acta Mater., 102, 88–96 (2016).
52. C. Gutiérrez-Lázaro, I. Bretos, R. Jiménez, J. Ricote, H. E. Hosiny, D. Pérez-Mezcua, R. J. J. Rioboó, M. García-Hernández, and M. L. Calzada, ‘‘Solution synthesis of BiFeO3 thin films onto silicon substrates with ferroelectric, magnetic, and optical functionalities,’’ J. Am. Ceram. Soc., 96, 3061–3069 (2013).
53. A. Rabenau, ‘‘The role of hydrothermal synthesis in preparative chemistry,’’ Angew. Chem. Int. Ed. Engl., 24, 1026–1040 (1985).
54. R. I. Walton, ‘‘Subcritical solvothermal synthesis of condensed inorganic materials,’’ Chem. Soc. Rev., 31, 230–238 (2002).
55. J. Peng, M. Hojamberdiev, B. Cao, J. Wang, and Y. Xu, ‘‘Surfactant-free hydrothermal synthesis of submicron BiFeO3 powders,’’ Appl. Phys. A, 103, 511–516 (2011).
56. J. P. Zhou, R. L. Yang, R. J. Xiao, X. M. Chen, and C. Y. Deng, ‘‘Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method,’’ Mater. Res. Bull., 47, 3630–3636 (2012).
57. S. H. Han, K. S. Kim, H. G. Kim, H. G. Lee, H. W. Kang, J. S. Kim, and C. I. Cheon, ‘‘Synthesis and characterization of multiferroic BiFeO3 powders fabricated by hydrothermal method,’’ Ceram. Int., 36, 1365–1372 (2010).
58. J. Jiang, J. Zou, M. N. Anjum, J. Yan, L. Huang, Y. Zhang, and J. Chen, ‘‘Synthesis and characterization of wafer-like BiFeO3 with efficient catalytic activity,’’ Solid State Sci., 13, 1779–1785 (2011).
59. C. Chen, J. Cheng, S. Yu, L. Che, and Z. Meng, ‘‘Hydrothermal synthesis of perovskite bismuth ferrite crystallites,’’ J. Cryst. Growth, 291, 135–139 (2006).
60. S. Basu, M. Pal, and D. Chakravorty, ‘‘Magnetic properties of hydrothermally synthesized BiFeO3 nanoparticles,’’ J. Magn. Magn. Mater., 320, 3361–3365 (2008).
61. L. Fei, J. Yuan, Y. Hu, C. Wu, J. Wang, and Y. Wang, ‘‘Visible light responsive perovskite BiFeO3 pills and rods with dominant 〖"{111}" 〗_"c" facets,’’ Cryst. Growth Des., 11, 1049–1053 (2011).
62. S. Han and C. S. Kim, ‘‘Weak ferromagnetic behavior of BiFeO3 at low temperature,’’ J. Appl. Phys., 113, 17D921 (2013).
63. L. Hou, Z. Y. Lu, Y. C. Dai, K. H. Zuo, Y. F. Xia, Z. M. Ren, J. Wu, X. G. Lu, Y. P. Zeng, and X. Li, ‘‘Self-assembled growth of BiFeO3 meso-octahedral particles synthesized by a facile surfactant-free hydrothermal method,’’ J. Crys. Growth, 434 42–46 (2016).
64. Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, and G. Han, ‘‘Hydrothermal synthesis of single-crystal bismuth ferrite nanoflakes assisted by potassium nitrate,’’ Ceram. Int., 35, 1285–1287 (2009).
65. X. Xu, Q. Xu, Y. Huang, X. Hu, Y. Huang, G. Wang, X. Hu, and N. Zhuang, ‘‘Control of crystal phase and morphology in hydrothermal synthesis of BiFeO3 crystal,’’ J. Crys. Growth, 437, 42–48 (2016).
66. H. Ishiwara, ‘‘Impurity substitution effects in BiFeO3 thin films―from a viewpoint of FeRAM applications,’’ Curr. Appl. Phys., 12, 603–611 (2012).
67. Y. L. Pei and C. Zhang, ‘‘Effect of ion doping in different sites on the morphology and photocatalytic activity of BiFeO3 microcrystals,’’ J. Alloys Compd., 570, 57–60 (2013).
68. T. Gholam, A. Ablat, M. Mamat, R. Wu, A. Aimidula, M. A. Bake, L. Zheng, J. Wang, H. Qian, R. Wu, and K. Ibrahim, ‘‘Local electronic structure analysis of Zn-doped BiFeO3 powders by X-ray absorption fine structure spectroscopy,’’ J. Alloys Compd., 710, 843–849 (2017).
69. A. Marzouki, H. Harzali, V. Loyau, P. Gemeiner, K. Zehani, B. Dkhil, L. Bessais, and A. Megriche, ‘‘Large magnetoelectric response and its origin in bulk Co-doped BiFeO3 synthesized by a stirred hydrothermal process,’’ Acta Mater., 145, 316–321 (2018).
70. P. Tang, D. Kuang, S. Yang, and Y. Zhang, ‘‘Structural, morphological and multiferroic properties of the hydrothermally grown gadolinium (Gd) and manganese (Mn) doped sub-micron bismuth ferrites,’’ J. Alloys Compd., 656, 912–919 (2016).
71. J. Mao, L. Cao, Z. Xiong, X. Wang, J. Zhou, Y. Li, and W. Wu, ‘‘Experimental and first principles investigation of Bi1-xCexFeO3: structure, electronic and optical properties,’’ J. Alloys Compd., 721, 638–645 (2017).
72. P. Wang and Y. Pu, ‘‘Enhanced ferroelectric and piezoelectric properties of LaxBi(1-x)FeO3 ceramics studied by impedance spectroscopy,’’ Ceram. Int., 43, S115–S120 (2017).
73. R. Li, L. Riester, T. R. Watkins, P. J. Blau, and A. J. Shih, ‘‘Metallurgical analysis and nanoindentation characterization of Ti-6Al-4V workpiece and chips in high-throughput drilling,’’ Mater. Sci. Eng. A, 472, 115–124 (2008).
74. B. H. Toby, ‘‘R factors in Rietveld analysis: How good is good enough?,’’ Powder Diffr., 21, 67–70 (2006).
75. A. Belloli, J. Heiber, F. Clemens, and P. Ermanni, ‘‘Novel characterization procedure for single piezoelectric fibers,’’ J. Intell. Mater. Syst. Struct., 20, 355–363 (2009).
76. M. Stewart, M. G. Cain, and D. A. Hall, ‘‘Ferroelectric hysteresis measurement and analysis,’’ Technical Report CMMT (A), 152, National Physical Laboratory (1999).
77. Bruker AXS TOPAS V4.2: General profile and structure analysis software for powder diffraction data, User’s manual, Bruker AXS, Karlsruhe, Germany (2009).
78. C. Cazorla, ‘‘Lattice effects on the formation of oxygen vacancies in perovskite thin films.’’ Phys. Rev. Appl., 7, 044025 (2017).
79. H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi, and M. Miyayama, ‘‘Raman scattering study of multiferroic BiFeO3 single crystal,’’ J. Magn. Magn. Mater., 310, e367–e369 (2007).
80. A. Jaiswal, R. Das, K. Vivekanand, P. M. Abraham, S. Adyanthaya, and P. Poddar, ‘‘Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals,’’ J. Phys. Chem. C, 114, 2018–2115 (2010).
81. P. Hermet, M. Goffinet, J. Kreisel, and Ph. Ghosez, ‘‘Raman and infrared spectra of multiferroic bismuth ferrite from first principles,’’ Phys. Rev. B, 75, 220102(R) (2007).
82. C. Quan, Y. Han, N. Gao, W. Mao, J. Zhang, J. Yang, X. Li, and W. Huang, ‘‘Comparative studies of pure, Ca-doped, Co-doped and co-doped BiFeO3 nanoparticles,’’ Ceram. Int., 42, 537–544 (2016).
83. W. Xia, H. Wu, Z. Xing, Q. Hang, X. Zhu, and Z. Liu, ‘‘Structural and vibrational properties of (Bi1-xLax)FeO3 and (Bi1-yBay)(Fe1-yTiy)O3 multiferroic ceramics investigated by Raman scattering,’’ Ceram. Int., 43, S43–S48 (2017).
84. Y. Wan, Y. Li, Y. Guo, Q. Zheng, X. Wu, C. Xu, and D. Lin, ‘‘Structure, ferroelectric, piezoelectric and ferromagnetic properties of BiFeO3-Ba0.6(Bi0.5K0.5)0.4TiO3 lead-free multiferroic ceramics,’’ J. Mater. Sci. Mater. Electron., 25, 1435–1541 (2014).
85. H. Zhao, J. Wang, L. Zhang, Y. Rong, J. Chen, K. Ibrahim, and X. Xing, ‘‘Effects of oxygen vacancy on the electronic structure and multiferroics in sol-gel derived Pb0.8Co0.2TiO3 thin films,’’ Dalton Trans., 42, 10358–10364 (2013).
86. X. Qi, W. C. Chang, J. C. Kuo, I. G. Chen, Y. C. Chen, C. H. Ko, and J. C. A. Huang, ‘‘Growth and characterisation of multiferroic BiFeO3 films with fully saturated ferroelectric hysteresis loops and large remanent polarisations,’’ J. Eur. Ceram. Soc., 30, 283–287 (2010).