簡易檢索 / 詳目顯示

研究生: 謝漢勳
Shieh, Hann-Shiun
論文名稱: 碎形理論運用在碎形接觸面之微接觸行為理論分析
The Theoretical Model of Elastic-Plastic Microcontacts of Rough Surfaces Developed for Multi-Form Fractal Contact Areas
指導教授: 林仁輝
Lin, Jen Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系碩士在職專班
Department of Mechanical Engineering (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 140
中文關鍵詞: 微接觸粗糙峰碎形
外文關鍵詞: microcontact, asperity, fractal
相關次數: 點閱:84下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本論文的研究目的為建立表面粗度截面為島嶼形狀之微接觸力學模型,一般的研究,通常會把粗糙峰視為圓球或橢圓球,而在本文則利用碎形花樣建立真實粗糙峰接觸面碎形島嶼形狀。所以碎形理論中控制粗糙面形貌之參數,如碎形維度與高度尺度參數將不再視為定值,而是隨著不同平均分離距離改變的變數。且碎形維度、高度尺度參數隨兩接觸面之平均分離距離改變而變化之關係,是建立在不同變形區域(彈性變形區域、第一彈塑性變形區域、第二彈塑性變形區域、全塑性變形區域)皆重疊之境域(Overlap),故實驗更接近真實微接觸行為模型。此研究結果可運用於計量各種不同複雜形貌之微接觸行為,故對於一般機械元件接觸真實行為分析,如精密機械之定位、加工和傳動,以及奈米科技有關界面行為是相當重要的。
    本文創新思維,由碎形花樣建立真實粗糙峰接觸面碎形島嶼形狀,由此碎形島嶼外形輪廓(Contour)之周長和面積可量測出二維碎形接觸面尺度參數。接著利用二維碎形接觸面與三維粗糙峰之接觸數量相等之概念,建立二維碎形接觸面尺度參數與三維粗糙度碎形維度、高度尺度參數隨兩接觸面之平均分離距離改變而變化之關係,此是粗糙峰接觸面微接觸行為研究上較大的成果。
    本文與以往論文不同之處有三。(一)提供一重要有效方法來分析微接觸行為,並找出各種複雜島嶼外形微接觸面之碎形參數。在以往分析單一粗糙峰的碎形行為理論模型時,皆假設粗糙峰的峰尖為半球體或半橢圓體。但實際接觸行為的外形應符合碎形的不規則島嶼形狀輪廓形貌;本文成功地以科赫曲線(Koch Curve)藉由Autocad軟體當工具發展出粗糙峰外形為碎形島嶼形狀輪廓的微接觸模型,更接近真實粗糙峰外形,故於分析微接觸行為上大幅減少碎形參數之誤差。(二)本文研究利用二維碎形接觸面與三維粗糙峰之接觸數量相等之概念,來建立二維碎形接觸面尺度參數與三維粗糙度碎形維度、高度尺度參數隨兩接觸面之平均分離距離變化之關係。(三)分別找出在彈性變形、彈塑性變形和完全塑性變形時,二維碎形接觸面參數,隨不同的平均分離距離變化所對應三維粗糙峰接觸面參數之重合境域(Overlap)中,找出真實接觸面碎形參數之範圍,藉由曲線適配(Curve fitting)得到碎形維度和高度尺度參數等參數為平均分離距離的函數,進而建立兩粗糙面接觸時,在不同的平均分離距離下所對應的接觸性質-接觸負載、真實接觸面積。
    因此本研究利用可變形貌參數隨不同平均分離距離時粗糙峰高斯分佈函數之碎形理論模型,來建立較接近真實接觸過程的理論模型。本研究結果呈現以理論方法推導出形貌參數於接觸過程中的變化關係,其中說明取樣長度之範圍在 才適用碎形模型,超過此範疇碎形理論便不再適用。隨著取樣長度 愈大,則尺度參數愈大,但面積將趨於一定值。此現象說明尺度參數影響周長較面積為大。三維粗糙度碎形維度、高度尺度參數隨兩接觸面之平均分離距離增加而呈非線性增加。而碎形維度與高度尺度參數彼此間之變化亦為正比關係。縮小平均分離距離可造成接觸總力增加的特性,同時也會增大真實接觸面積增加,其增加方式呈現非線性的增加。

    Abstract

    This objective of present dissertation is to establish the microcontact model with variable topography parameters. The fractal parameter (fractal dimension and topothesy). describing the roughness surface, are no longer considered as constant. They are variables which will change with different mean separation distance. The relationship described above was established at the overlapped area in the elastic, elastoplastic and fully plastic deformation. Thus, the results predicted by the present model will be the actual microcontact behavior
    model.
    In the present study, we developed a new idea, which uses fractal pattern to establish the fractal island shape of real asperity contact area, and measure the two dimensional topothesy parameter (Gs) from the contour length and area of fractal island contour. Based on the relationship of equating the contact number of two dimensional fractal model and three dimensional fractal model, the relationship between the two dimensional topothesy parameter and the three dimensional parameters, which will changed with the mean separation distance, can be established. This developed relationship will be an important progress in the research of asperity microcontact behavior model.
    Three kinds of characteristics which is different from earlier study are developed in the present study. First, in the previous fractal model, it assumed that the asperity tip is half sphere or elliptic shape. But it must be the irregular fractal island contour in real contact behavior. In the present study, it is successful for using Koch curve to develop the asperity contour, which is the fractal island contour, by using the Autocad software. This model is closer to the real asperity shape and considerably reduce the error of fractal parameters in analyzing microcontact behavior. Second, in the present study, by equating the contact numbers of two dimensional fractal contact model and three dimensional roughness asperity to establish the relationship between the two dimensional topothesy parameter and the three dimensional parameters, which will change with the mean separation distance. Third, finding the two dimensional contact parameters (Ds,Gs) in the elastic, elastoplastic and fully plastic deformation, the scope of real contact fractal parameter (D,G) which change with different mean separation distance can be found from the overlapped area corresponding to three dimensional roughness contact area parameter (D,G). By curve fitting to get the function for fractal dimension and topothesy with different mean separation distance. Thus, the contact load and real contact area with different mean separation distance can be found in the
    contact behavior of two rough surfaces.
    In the present study, the fractal theory model for the gauss distribution function of asperity height, which variable topography parameters are changed with different mean separation distance, is used to establish the theory model which is closer to the real contact process. It is successful for using theory method to infer the variable relationship of topography parameters in contacting process. It can explain that the sample length is confined in the range of 10-7 to 10-9 m, which are applicable for the fractal model. The larger the sample length is, the bigger the topothesy parameter is. But the area will approach to a constant. This phenomenon can explain that the topothesy parameter will affect the contour length than the area. The three dimensional roughness fractal dimension and topothesy parameter increase nonlinearly as increasing the mean separation distance of two contact surfaces. Total contact force and real contact area change obviously as decreasing mean
    separation distance.

    目錄 摘要---Ⅰ Abstract---Ⅲ 誌謝---Ⅴ 目錄---Ⅵ 表目錄---Ⅷ 圖目錄--- ⅠⅩ 符號說明---ⅩⅢ 第一章 緒論---1 1-1 前言---1 1-2 文獻回顧---1 1-2-1 統計理論之微接觸模型---1 1-2-2 碎形理論之微接觸模型---3 1-3 研究目的與內容---5 1-4 論文架構---7 第二章 基本理論---8 2-1 碎形理論應用於微接觸之分析---8 2-2 海岸線的量測---8 2-3 科赫曲線---9 2-4 自我相似性---10 2-5 自我仿射性---10 2-6 單一粗糙峰碎形接觸面面積與碎形接觸面尺度參數關係之建立---11 2-7 W-M碎形方程式---13 2-8 功率頻譜密度14 2-9 結構函數法---15 2-10 碎形理論之微接觸模型---16 2-11 統計理論應用於微接觸之分析---17 2-12 粗糙峰彈性接觸變形---19 2-13 粗糙峰彈塑性接觸變形---19 2-14 粗糙峰完全塑性接觸變形---21 2-15 彈性、彈塑性與完全塑性變形區域之碎形模式接觸負載---21 2-16 彈性、彈塑性與完全塑性變形區域之尺寸分佈函數---24 2-17 碎形理論模型之接觸負載與接觸面積---27 2-18 二維碎形接觸面尺度參數與三維粗糙度碎形維度、高度尺度參數隨兩接觸面之平均分離距離改變而變化之關係---27 第三章 結果分析與討論---46 3-1 二維接觸面碎形島嶼形狀之周長、面積對碎形接觸面尺度參數的影響---47 3-2 二維碎形接觸面尺度參數對三維粗糙度高度尺度參數和碎形維度之影響---50 3-3 兩接觸面平均分離距離對三維粗糙度高度尺度參數和碎形維度之影響---51 3-4 三維粗糙度高度尺度參數和碎形維度對接觸負載及接觸面積之影響---54 第四章 結論與未來研究方向---120 4-1 結論---120 4-2 未來研究方向---121 附錄---124 參考文獻---136 自述---140

    參考文獻

    [1]Greenwood, J. A. and Williamson, J. B. P., 1966, “Contact of Nominally Flat Surface,” Proceedings of Royal Society of London, Series A, A295, pp.300-319.
    [2]Chang, W. R., Etsion, I. and Bogy, D. B., 1987, “An Elastic-Plastic Model for the Contact of Rough Surfaces,” ASME Journal of Tribology, 101, pp.15-20.
    [3]Horng, J. H., 1998, “An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surfaces,” ASME Journal of Tribology, 120, pp.82-88.
    [4]Zhao, Y., Maietta, D. M. and Chang, L., 2000, “An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow,” ASME Journal of Tribology, 122, pp.86-93.
    [5]Johnson, K. L., 1985, Contact Mechanics, Cambridge, Cambridge University.
    [6]Jeng, Y. R., and Wang, P. Y., 2003, “An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation,” ASME Journal of Tribology, 125, pp.232-240.
    [7]Kogut, L. and Etsion, I., 2002, “Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat,” ASME Journal of Applied Mechanics, 69, pp.657-662.
    [8]Kogut, L. and Etsion, I., 2003, “A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surface,” STLE Tribology Transaction, 46, pp.383-390.
    [9]Lin, L. P., and Lin, J. F., 2006, “A New Method for Elastic-Plastic Contact Analysis of a Deformable Sphere and a Rigid Flat,” ASME Journal of Tribology, Accepted, in press.
    [10]Whitehouse, D. J., 2003, Handbook of Surface and Nanometrology, Institute of Physics Publishing, Bristol, p. 99.
    [11]Mandelbort, B. B., 1982, The Fractal Geometry of Nature, W. H. Freeman, New York.
    [12]Gagnepain, J. J., and Roques-Carmes, C., 1986, “Fractal Approach to Two-Dimensional and Three-Dimensional Surface Roughness,” Wear, 109, pp.119-126.
    [13]Majumdar, A. and Tien, C. L., 1990, “Fractal Characterization and Simulation of Rough Surfaces,” Wear, 136, pp.313-327.
    [14]Ling, F. F., 1987, “Scaling Law for Contoured Length of Engineering Surface,” Journal of Applied Physics, 62(6), pp.2570-2572.
    [15]Majumdar, A., and Bhushan, B., 1991, “Fractal Model of Elastic-Plastic Contact Between Rough Surfaces,” ASME Journal of Tribology, 113, pp. 1-11.
    [16]Bhushan, B., and Majumdar, A., 1992, “Elastic-Plastic Contact for Bifractal Surfaces,” Wear, 153, pp.53-64.
    [17]Blackmore, D., and Zhou, G., 1998, “A New Fractal Model for Anisotropic Surfaces,” Int. J. Mach. Tools Manuf., 38, pp. 551-557.
    [18]Blackmore, D., and Zhou, J. G., 1998, “Fractal Analysis of Height Distributions of Anisotropic Rough Surfaces,” Fractal, 6(1), pp. 43-58.
    [19]Zahouani, H., Vargiolu, R., and Loubet, J. L., 1998, “Fractal Models of Surface Topography and Contact Mechanics,” Math. Comput. Modell., 28(4-8), pp. 517-534.
    [20]Yan, W., and Komvopoulos, K., 1998, “Contact Analysis of Elastic-Plastic Fractal Surfaces,” Journal of Applied Physics, 84(7), pp. 3617-3624.
    [21]Othmani, A., and Kaminsky, C., 1998, “Three Dimensional Fractal Analysis of Sheet Metal Surfaces,” Wear, 214, pp. 147-150.
    [22]Chung, J. C., Lin, J. F., 2004, “Fractal Model Developed for Elliptic Elastic-Plastic Microcontacts of Rough Surfaces,” ASME Journal of Tribology, 126, pp. 646-654.
    [23]Chung, J. C., Lin, J. F., 2006, “Variation in Fractal Properties and Non-Gaussian Distributions of Microcontact Between Elastic-Plastic Rough Surfaces With Mean Surface Separation,” ASME Journal of Applied Mechanics, 73, pp. 143-152.
    [24]Mandelbrot, B. B., 1967, “How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension,” Science., 155, pp. 636-638.
    [25]張志三,1996,漫談碎形(A Talk About Fractals),新世紀物理研習叢書,牛頓出版股份有限公司, pp.7-8
    [26]Papoulis, A., 1965, Probability, Random Variables and Stochastic Process, McGraw-Hill, New York.
    [27]Berry, M. V., and Berman, D. H., 1980, “On the Weierstrss-Mandelbrot Fractal Function,” Proceedings of Royal Society of London, A370, pp.459-484.
    [28]Tabor, D., 1951, The Hardness of Metals, Oxford, Oxford University.
    [29]Ogilvy, J. A., 1991, “Numerical Simulation of Friction between Contacting Rough Surfaces,” Journal of Physics D: Applied Physics, 24, pp. 2098-2109.
    [30]Bush, A. W., Gibson, R. D. and Keogh, G. P., 1979, “Strong Anisotropic Rough Surface,” ASME Journal of Tribology, 101, pp.15-20.
    [31]葛世榮、朱華,摩擦學的分形,機械工業出版社,北京,2005.
    [32]Bhushan, B., 1999, Handbook of Micro/Nanotribology, CRC press 2nd ed.
    [33]劉正倫,“具可變形貌參數之微接觸模型理論研究”,博士論文,國立成功大學機械工程研究所,2006.
    [34]鐘榮欽,“碎形理論模型運用在橢圓及圓形接觸之彈塑性峰尖微接觸行為分析”,博士論文,國立成功大學機械工程研究所,2005.
    [35]Mandelbort, B. B., 1982, The Fractal Geometry of Nature, W. H. Freeman, New York.
    [36]Johnson, K. L, 1987, Contact Mechanics, Cambridge university press.
    [37]Liou, J. L. and Lin, J. F., 2006, “A New Method Developed for Fractal Dimension and Topothesy Varying with the Mean Separation of Two Contact Surfaces,” Accepted by ASME Journal
    of Tribology, in press.

    下載圖示 校內:2007-08-09公開
    校外:2007-08-09公開
    QR CODE