簡易檢索 / 詳目顯示

研究生: 許儷馨
Hsu, Li-Hsin
論文名稱: 以鋁系共沉澱法處理水中之四氟硼酸
Decomposition of tetrafluoroborate (BF4-) and removal of the derived fluoride and boron by aluminum salt coagulation
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 84
中文關鍵詞: 四氟化硼共沉澱法
外文關鍵詞: tetrafluoroborate, fluoride, boron, aluminum, coagulation
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代工業如玻璃、面板、電鍍製程及排煙脫硫工廠所排放廢水中含四氟化硼並同時含有硼與氟等污染物,因此大幅增加水處理難度。本研究針對含四氟化硼廢水(100 mg-B/L),使用氯化鋁作為混凝劑,調整兩階段pH,以混凝劑的加藥量、溫度作為研究變因,探討四氟化硼的降解及硼與氟的去除率。研究發現在第一階段四氟化硼與鋁離子反應分解為硼酸與鋁氟酸離子,pHI由6.8下降至1.5,並且鋁氟酸離子(AlF2+)繼續解離成鋁離子與氟離子;第二階段調整pHII至6.0,鋁離子(Al3+)形成氫氧化鋁(Al(OH)3),並與氟離子(F-)反應成為鹼式氟化鋁(AlnFm(OH)3n-m)等混凝劑,進而沉澱掃除水中硼酸(B(OH)3)與氟離子。在最佳操作條件下(初始[BF4-] = 803 mg/L (100 mg-B/L), pHI = 1.5, pHII = 6.0, [Al3+] = 0.08M, 30 °C),第一階段四氟化硼降解至1 mg/L以下,降解率達99.9%,第二階段硼與氟濃度分別下降至72.9 mg/L與8.38 mg/L,去除率分別達32.6%及98.8%,其中氟已符合放流水標準(< 15 mg/L)。

    Tetrafluoroborate ion (BF4-) generally is found in industrial streams, such as flue gas desulfurization in coal-fired power plants and wet-etching of the borosilicate glasses using hydrofluoric acid. This research investigated the chemical coagulation of BF4- (100 mg-B/L), fluoride and boron using aluminum chloride. The experimental parameters included pH, temperature, and dosage of Al(III). Initially, BF4- anions were decomposed effectively in forms of boric acid and fluoroaluminate complexes by aluminum ions at around pH 1.5; afterwards, the derived boric acid and fluoride ions were co-precipitated with aluminum hydroxide (AlOH3(S)) by elevating pH 6.0. Under optimal conditions: 0.08 M [Al3+], 30 °C, 99.9% of BF4- was decomposed, and the removal efficiencies of fluoride and total boron attained 98.8% and 32.6%, respectively, in 2 h. The concentration of residual fluoride in the end solution was 8.38 mg/L.

    目錄 第一章 緒論 1 1-1 研究源起 1 1-2 研究目的與內容 2 第二章 文獻回顧 3 2-1 自然界中的硼氟 3 2-2 四氟化硼之形成與性質 3 2-3 四氟化硼的應用與汙染 7 2-4 硼氟的必要性與危害性 10 2-4-1 硼對動植物的必要與危害 10 2-4-2 氟對動植物的必要與危害 11 2-5 水質規範與標準 12 2-5-1 硼的水質規範 12 2-5-2 氟的水質規範 13 2-6 水中硼氟去除方法 14 2-6-1 吸附法 15 2-6-2 薄膜分離法 16 2-6-3 混凝沉澱法 18 2-6-4 電混凝法 19 2-6-5 化學過氧沉澱技術 20 2-7 四氟化硼去除方法 22 第三章 實驗設備、材料與方法 28 3-1 研究架構與流程 28 3-2 實驗設備介紹 29 3-3 符號及公式定義 30 3-4 實驗藥品 31 3-5 實驗步驟 32 3-6 檢測儀器與分析方法 32 3-6-1 感應耦合電漿原子發射光譜儀 32 3-6-2 離子層析儀 34 3-6-3 X光繞射分析儀 36 3-6-4 固體成分分析 37 第四章 結果與討論 38 4-1 混凝劑加藥量對鋁系化學共沉澱程序之影響 38 4-1-1 混凝劑加藥量對BF4-降解反應的影響 38 4-1-2 混凝劑加藥量對硼氟去除率之影響 40 4-2 pHI對鋁系化學共沉澱程序之影響 44 4-2-1 pHI對BF4-降解反應的影響 44 4-2-2 pHI對硼氟去除率之影響 46 4-2-3 四氟化硼之熱力學分析 49 4-2-4 不同鋁混凝劑加藥量下之物種分布 51 4-3 pHII對鋁系化學共沉澱程序之影響 57 4-3-1 pHII對四氟化硼降解反應之影響 57 4-3-2 pHII對硼氟去除反應之影響 59 4-4 溫度對鋁系化學共沉澱程序之影響 63 4-4-1 溫度對四氟化硼降解反應之影響 63 4-4-2 溫度對硼氟去除反應之影響 65 4-5 固體分析 68 第五章 結論與建議 72 5-1 結論 72 5-2 建議 74 參考文獻 75 附錄A 81 附錄B 82 附錄C 83

    [1] Schubert, D.M., Boron: Inorganic Chemistry, in Encyclopedia of Inorganic and Bioinorganic Chemistry. 2015.
    [2] P. Power, P. and W. G. Woods, The chemistry of boron and its speciation in plants. Vol. 193. 1997. 1-13.
    [3] Vithanage, M. and P. Bhattacharya, Fluoride in the environment: sources, distribution and defluoridation. Environmental Chemistry Letters $V 13, 2015(2): p. 131-147.
    [4] Brotherton, R.J., et al., Boron Compounds, in Ullmann's Encyclopedia of Industrial Chemistry. 2012. p. 237-258.
    [5] Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 2004. 104(10): p. 4303-4418.
    [6] Yasuhiro Matsumoto, W.J., et al., Electrical Double-Layer Capacitor. 2005, Honda Motor Co., Ltd., Tokyo (JP); Mitsubishi Chemical Corporation, Tokyo (JP): United States.
    [7] Hem, J.D. and C.E. Roberson, Form and stability of aluminum hydroxide complexes in dilute solution, in Water Supply Paper. 1967.
    [8] Katagiri, J., et al., Formation and decomposition of tetrafluoroborate ions in the presence of aluminum. J Mater Cycles Waste Manag 2010. 12: p. 136-146.
    [9] Lisbona, D.F. and K.M. Steel, Recovery of fluoride values from spent pot-lining: Precipitation of an aluminium hydroxyfluoride hydrate product. Separation and Purification Technology, 2008. 61(2): p. 182-192.
    [10] Wagner, M., Analyse und Modellierung langfristiger Auswirkungen einer hochdosierten Kalkungsmaßnahme auf den Stoffaustrag im Einzugsgebiet der Steilen Bramke (Oberharz). 2007: Cuvillier.
    [11] Hudlic'ky, M., Fluorine Chemistry for Organic Chemists: Problems and Solutions. 2000, Oxford University Press. p. 62-63.
    [12] Lin, J.-Y., et al., Electrocoagulation of tetrafluoroborate (BF4−) and the derived boron and fluorine using aluminum electrodes. Water Research, 2019. 155: p. 362-371.
    [13] Itakura, T., R. Sasai, and H. Itoh, A Novel Recovery Method for Treating Wastewater Containing Fluoride and Fluoroboric Acid. Vol. 79. 2006. 1303-1307.
    [14] Itakura, T., R. Sasai, and H. Itoh, In Situ Solid/Liquid Separation Effect for High-Yield Recovery of Boron and Fluorine from Aqueous Media Containing Borate or Fluoroborate Ions. Vol. 80. 2007. 2014-2018.
    [15] Chou, L.-J., 超薄玻璃液晶顯示器的製造方式與品質分析研究. 2008, 國立清華大學.
    [16] Yli-Pentti, A., Electroplating and Electroless Plating. Vol. 4. 2014. 277-306.
    [17] D. Gernon, M., et al., Environmental benefits of methanesulfonic acid. Comparative properties and advantages. Vol. 1. 1999. 127-140.
    [18] 台灣電力股份有限公司. https://www.taipower.com.tw.
    [19] ioneer. https://www.ioneer.com/materials/boron.
    [20] Gupta, U.C., et al., Boron toxicity and deficiency: a review. Canadian Journal of Soil Science, 1985. 65(3): p. 381-409.
    [21] Howe, P.D., A review of boron effects in the environment. Biological trace element research, 1998. 66(1-3): p. 153-166.
    [22] Nable, R.O., G.S. Bañuelos, and J.G. Paull, Boron toxicity. Plant and Soil, 1997. 193(1-2): p. 181-198.
    [23] Nielsen, F.H., Boron in human and animal nutrition. Plant and Soil, 1997. 193(1-2): p. 199-208.
    [24] Kabu, M. and M.S. Akosman, Biological effects of boron, in Reviews of environmental contamination and toxicology. 2013, Springer. p. 57-75.
    [25] Robbins, W.A., et al., Chronic boron exposure and human semen parameters. Reproductive Toxicology, 2010. 29(2): p. 184-190.
    [26] 徐慈鴻 and 李貽華, 氟汙染與植物. 行政院農業委員會農業藥物毒物試驗所技術專刊第142號.
    [27] 阮國棟, 氟化物之污染特性及處理技術. 工業污染防治第29期, 1989.
    [28] WHO, Guidelines for drinking-water quality. 2017.
    [29] EUR-Lex.https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31998L0083.
    [30] Japan, M.o.t.E.G.o. https://www.env.go.jp/en/water/gw/gwp.html.
    [31] 5749-2006, G., 生活饮用水卫生标准. 2007.
    [32] Scientific Criteria Document for the Development of the Canadian Water Quality Guidelines for Boron. Canadian Council of Ministers of the Environment, 2009.
    [33] Japan National Effluent Standards. Ministry of the Environment, Government of Japan.
    [34] 中華民國行政院環境保護署, 放流水標準第二條修正草案總說明. 2017.
    [35] ZDHC, Textile Industry Wastewater Discharge Quality Standards: Literature Review. 2015.
    [36] 中華民國行政院環境保護署, 飲用水水質標準. 2017.
    [37] Mukherjee, S., et al., Elucidation of the sorptive uptake of fluoride by Ca2+-treated and untreated algal biomass of Nostoc sp. (BTA394): Isotherm, kinetics, thermodynamics and safe disposal. Process Safety and Environmental Protection, 2017. 107: p. 334-345.
    [38] 8978-1996, G., 污水综合排放标准. 1998.
    [39] Wang, B.Y., X.H. Guo, and P. Bai, Removal technology of boron dissolved in aqueous solutions - A review. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2014. 444: p. 338-344.
    [40] Hilal, N., G.J. Kim, and C. Somerfield, Boron removal from saline water: A comprehensive review. Desalination, 2011. 273(1): p. 23-35.
    [41] Wolska, J. and M. Bryjak, Methods for boron removal from aqueous solutions—A review. Desalination, 2013. 310: p. 18-24.
    [42] Theiss, F.L., G.A. Ayoko, and R.L. Frost, Removal of boron species by layered double hydroxides: A review. Journal of Colloid and Interface Science, 2013. 402: p. 114-121.
    [43] Guan, Z.M., et al., Boron removal from aqueous solutions by adsorption - A review. Desalination, 2016. 383: p. 29-37.
    [44] Schoeman, J., Performance of a water defluoridation plant in a rural area in South Africa. Vol. 35. 2009.
    [45] Tagliabue, M., A.P. Reverberi, and R. Bagatin, Boron removal from water: needs, challenges and perspectives. Journal of cleaner production, 2014. 77: p. 56-64.
    [46] Xu, Y. and J.-Q. Jiang, Technologies for boron removal. Industrial & Engineering Chemistry Research, 2008. 47(1): p. 16-24.
    [47] Brião, V.B., et al., Reverse osmosis for desalination of water from the Guarani Aquifer System to produce drinking water in southern Brazil. Desalination, 2014. 344: p. 402-411.
    [48] Dydo, P. and M. Turek, Boron transport and removal using ion-exchange membranes: A critical review. Desalination, 2013. 310: p. 2-8.
    [49] Kabay, N., E. Guler, and M. Bryjak, Boron in seawater and methods for its separation - A review. Desalination, 2010. 261(3): p. 212-217.
    [50] Boubakri, A., et al., Effect of operating parameters on boron removal from seawater using membrane distillation process. Desalination, 2015. 373: p. 86-93.
    [51] Fu, F.L. and Q. Wang, Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 2011. 92(3): p. 407-418.
    [52] Irawan, C., Y.L. Kuo, and J.C. Liu, Treatment of boron-containing optoelectronic wastewater by precipitation process. Desalination, 2011. 280(1-3): p. 146-151.
    [53] Yilmaz, A.E., et al., Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Korean Journal of Chemical Engineering, 2012. 29(10): p. 1382-1387.
    [54] Tsai, H.C. and S.L. Lo, Boron removal and recovery from concentrated wastewater using a microwave hydrothermal method. Journal of Hazardous Materials, 2011. 186(2-3): p. 1431-1437.
    [55] 李茂松, 廖啟鐘, and 洪仁陽, 含氟廢水結晶處理方法. 2001: 中華民國.
    [56] Ezechi, E.H., et al., Boron removal from produced water using electrocoagulation. Process Safety and Environmental Protection, 2014. 92(6): p. 509-514.
    [57] Sandoval, M.A., et al., Simultaneous removal of fluoride and arsenic from groundwater by electrocoagulation using a filter-press flow reactor with a three-cell stack. Separation and Purification Technology, 2019. 208: p. 208-216.
    [58] Lin, J.-Y., et al., Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature. Applied Energy, 2016. 164: p. 1052-1058.
    [59] Shih, Y.-J., et al., A novel chemical oxo-precipitation (COP) process for efficient remediation of boron wastewater at room temperature. Chemosphere, 2014. 111: p. 232-237.
    [60] 黃國豪, et al., 含硼廢水的處理方法. 2002, 益鼎工程股份有限公司 and 財團法人工業技術研究院, 中華民國.
    [61] 黃耀輝, et al., 從含硼廢水中將硼移除的方法, 國家中山科學研究院(中華民國), Editor. 2016: 國家中山科學研究院, 中華民國.
    [62] 黃耀輝 and 林睿彥, 高濃度含硼廢水之處理方法. 2017: 國立成功大學, 中華民國
    [63] Shih, Y.J., et al., A novel chemical oxo-precipitation (COP) process for efficient remediation of boron wastewater at room temperature. Chemosphere, 2014. 111: p. 232-237.
    [64] Yoshioka, T., et al., Removal of tetrafluoroborate ion from aqueous solution using magnesium–aluminum oxide produced by the thermal decomposition of a hydrotalcite-like compound. Chemosphere, 2007. 69(5): p. 832-835.
    [65] Xiang, H., et al. 1-Butyl-3-methylimidazolim tetrafluoroborate removal by electrolysis treatment. in 2010 International Conference on Mechanic Automation and Control Engineering. 2010.
    [66] Katagiri, J., T. Yoshioka, and T. Mizoguchi, Basic study on the determination of total boron by conversion to tetrafluoroborate ion (BF 4 −) followed by ion chromatography. Vol. 570. 2006. 65-72.
    [67] Lin, J.Y., et al., Role of phase transformation of barium perborates in the effective removal of boron from aqueous solution via chemical oxo-precipitation. Rsc Advances, 2016. 6(68): p. 63206-63213.
    [68] Yılmaz, A., et al., Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Vol. 29. 2012. 1382-1387.
    [69] Hu, J., et al., Charge-Aggregate Induced (CAI) Reverse Osmosis Membrane for Seawater Desalination and Boron Removal. Vol. 520. 2016.
    [70] Alharati, A., et al., Boron removal in water using a hybrid membrane process of ion exchange resin and microfiltration without continuous resin addition. Journal of Water Process Engineering, 2017. 17: p. 32-39.
    [71] Kartikaningsih, D., Y.-J. Shih, and Y.-H. Huang, Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode. Sustainable Environment Research, 2016. 26(4): p. 150-155.
    [72] Huang, H., et al., Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chemical Engineering Journal, 2017. 307: p. 696-706.
    [73] Su, C. and D.L. Suarez, Coordination of Adsorbed Boron: A FTIR Spectroscopic Study. Environmental Science & Technology, 1995. 29(2): p. 302-311.
    [74] Owen, B.B., The Dissociation Constant of Boric Acid from 10 to 50°. Journal of the American Chemical Society, 1934. 56(8): p. 1695-1697.
    [75] Çırak, M., High-temperature electrocoagulation of colloidal calcareo-argillaceous suspension. Powder Technology, 2018. 328: p. 13-25.
    [76] Xiao, F., B. Zhang, and C. Lee, Effects of low temperature on aluminum(III) hydrolysis: Theoretical and experimental studies. Journal of Environmental Sciences, 2008. 20(8): p. 907-914.

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE