簡易檢索 / 詳目顯示

研究生: 陳信宇
Chen, Shinn-Yu
論文名稱: 探針電鍍銅之析鍍行為研究
Investigation on the electroplating behavior of Cu deposited on a tip
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 電鍍銅電子束微影
外文關鍵詞: electron beam lithography, electroplating Cu
相關次數: 點閱:71下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於電鍍具有基材形狀效應,在尖端處會有電流集中的效果,因此本研究探討探針尖端電鍍銅的析鍍行為。研究中使用AFM探針作為電鍍電極,並將AFM探針尖端相對放置,探討當基材為極小的針尖之時,其鍍層分佈之狀況。並且比較以微影製程於尖端開孔之鍍層分佈情況。研究分為電鍍銅鍍層於無塗佈光阻探針與微影開孔之探針頭電鍍銅鍍層兩部份。本實驗使用微影開孔技術為電子束微影製程。
    由無塗佈光阻探針之析鍍行為研究中顯示,若要電鍍銅鍍層於無塗佈光阻AFM探針上,電流密度最小要0.1 A/dm2才可克服活性極化造成的過電壓。此外接觸電阻的變化會影響鍍層厚度與結核大小,且影響鍍層覆蓋在AFM探針的程度。而AFM探針尖端較不易析鍍鍍層。由微影開孔之探針頭析鍍行為研究中顯示,微影開孔處與尖端會有鍍層析鍍,但仍然沒有基材形狀因素,顯示有其他原因影響尖端鍍層析鍍。綜合兩實驗結果可發現,尖端是較不易析鍍的位置,尖端鍍層較難析鍍的主因可能是由於奈米尺寸AFM尖端表面能變化使得尖端析鍍銅所需之過電壓提高,另外電流路徑總電阻也會造成尖端不易析鍍。AFM探針尖端電鍍銅的生長模式為無論電流密度大小,增長電鍍時間,會使得AFM探針尖端被自側邊成長的鍍層覆蓋。越遠離尖端,鍍層成長越厚,而與尖端放電使得銅鍍層能夠在兩電極間有異向性成長理論不吻合。

    Because of the shape effect of substrate, the current density will concentrate on a tip. The present work investigated the behavior of electroplating Cu on a probe tip. AFM probes were used as electrodes for the electroplating system and the tips were fixed head to head in the opposite direction. The present work studied the distribution of deposited layer on the substrate having a very small tip and compared with the distribution of deposited Cu layer using lithography to expose the area on a tip. The experiments were divided into two parts: electroplating Cu layer on an AFM probe without coating photoresist; electroplating Cu layer on an AFM probe with an open area on tip by lithography. The lithography used in the experiment was electron beam lithography,
    The results of electroplating Cu layer on an AFM probe without coating photoresist revealed that the Cu layer was deposited on the probe with the minimum current density 0.1 A/dm2 to overcome the overpotential resulting from activation polarization. The change of contact resistance influenced the thickness of as-deposited layer, the nodule size and the degree of deposited Cu layer covering on a AFM probe. The AFM tip was found to be difficult for electroplating Cu layer.
    However the results of electroplating Cu layer on a AFM probe with an open area on tip by lithography showed that open area and tip had deposited layer but the shape effect still can’t be found. The results revealed another reason to affect the behavior of electroplating on a tip.
    Synthesizing both experimental results revealed the AFM tip as the hardest site to be deposited. The main reason was that the tip size with nanometer scale caused the surface energy to change and elevated the overpotential of the AFM probe tip. The total resistance of electric current path also increased resulting in the same situation.
    The growth mode of electroplating Cu layer on an AFM tip revealed that no matter what the current density was, the tip was covered with Cu layer grew up from the side of tip finally. The longer the distance away from the tip, the thicker the thickness of Cu layer. This result was not related to the anisotropy growth between both electrodes due to current density concentrating on the tip.

    總目錄 中文摘要.................................................................................................Ⅰ 英文摘要.................................................................................................Ⅱ 誌謝.........................................................................................................Ⅳ 總目錄.....................................................................................................Ⅵ 表目錄.....................................................................................................Ⅷ 圖目錄.....................................................................................................Ⅸ 第壹章 簡介.............................................................................................1 1-1 電鍍金屬銅發展與應用................................................................1 1-1-1 電鍍金屬銅發展.....................................................................1 1-1-2 電鍍金屬銅應用.....................................................................2 1-2 電鍍理論........................................................................................3 1-2-1 電鍍熱力學.............................................................................3 1-2-2 電鍍動力學.............................................................................6 1-2-3 電流分佈與鍍層分佈...........................................................11 1-3 電子束微影製程技術..................................................................12 1-4 實驗目的......................................................................................14 第貳章 實驗方法與步驟.......................................................................15 2-1 實驗構想......................................................................................15 2-2 電鍍準備......................................................................................15 2-2-1 實驗設備...............................................................................20 2-2-2 電鍍液組成...........................................................................20 2-2-3 實驗試片設計.......................................................................20 2-3 電鍍銅鍍層於無塗佈光阻探針..................................................26 2-3-1 底材前處理...........................................................................26 2-3-2 電鍍操作...............................................................................31 2-3-3 鍍層表面觀察與成份分析...................................................31 2-4 微影開孔之探針頭電鍍銅鍍層..................................................31 2-4-1 實驗設備...............................................................................31 2-4-2 底材前處理...........................................................................32 2-4-3 光阻塗佈...............................................................................32 2-4-4 電子束微影製程...................................................................32 2-4-5 電鍍操作...............................................................................32 2-4-6 鍍層表面觀察與成份分析...................................................35 第參章 結果與討論...............................................................................37 3-1 電鍍銅鍍層於無塗佈光阻探針之析鍍行為..............................37 3-1-1 不同電流密度對鍍層之影響...............................................37 3-1-2 不同電鍍時間對鍍層之影響...............................................43 3-1-3 綜合討論...............................................................................48 3-2 微影開孔探針頭之電鍍銅鍍層的析鍍行為..............................53 3-2-1 不同電鍍時間之鍍層成長模式...........................................53 3-3 綜合討論......................................................................................55 3-3-1 無塗佈與探針頭開孔之析鍍行為比較...............................61 3-3-2 探針頭析鍍行為...................................................................61 第肆章 結論...........................................................................................63 參考文獻.................................................................................................64 自述.........................................................................................................67

    1.W. H. Cubberly, H. Baker, D. Benjamin, P. M. Unterweiser, C. W. Kirkpatrick, V. Knoll and K. Nieman, “Metals Handbook”, ASM, Ohio, Ninth Edition, Vol. 2, pp. 239~247, 1979.
    2.M. Schlesinger and M. Paunovic, “Modern Electroplating”, John Wiley & Sons, Inc, Canada, Fourth Edition, pp. 61~132, 2000.
    3.蔡維倫, “以電鍍方法製造微小結構之研究”, 碩士論文, 成功大學化工系, pp. 11~18, 1997.
    4.J. W. Dini, “Electrodeposition - The Material Science of Coating and Substrate”, Noyes Publications, New Jersey, pp. 195~248, 1992.
    5.T. Hara, H. Toida, and Y. Shimura, “The Self-Annealing Phenomenon in Copper Interconnection”, Electrochemical and Solid-State Letters, Vol. 7 , No. 6, pp. G98~G100, 2003.
    6.M. Hasegawa, Y. Nonaka, Y. Negishi, Y. Okinaka and T. Osaka, “Enhancement of the Ductility of Electrodeposited Copper Films by Room-Temperature Recrystallization”, Journal of The Electrochemical Society, Vol. 153, No. 2, pp. C117~C120, 2006.
    7.B. Tromans, “The Canning Handbook on Electroplating”, Published by W. Canning limited, Birmingham, Twenty-second Edition, pp. 520~570, 1978.
    8.P.C.Andricacos, C. Uzoh, J.O. Dukovic and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections”, IBM Journal of Research and Development, Vol. 42, pp.567~574, 1998.
    9.J. D. Plummer, M. D. Deal and P. B. Griffin, “Silicon VLSI Technology”, Prentice Hall Inc., New Jersey, pp. 681~786, 2000.
    10.M. and M. Schlesinger, “Fundamental of Electrochemical Deposition”, John Wiley & Sons, Inc, New York, pp. 51~72, 1998.
    11.F. A. lowenheim, “Electroplating”, McGraw-Hill, New York, pp. 1~61, 1978.
    12.M. Schlesinger and M. Paunovic, “Modern Electroplating”, John Wiley & Sons, Inc, Canada, Fourth Edition, pp. 1~65, 2000.
    13.D. A. Jones, “Principles and Prevention of Corrosion”, Prentice-Hall Inc., New Jersey, Second Edition, pp. 1~39, 1996.
    14.M. and M. Schlesinger, “Fundamental of Electrochemical Deposition”, John Wiley & Sons, Inc, New York, pp. 187~196, 1998.
    15.G. Milazzo snd S. Caroli, “Table of Stardand Electrode Potential”, Wiley, New York, 1978
    16.D. A. Jones, “Principles and Prevention of Corrosion”, Prentice-Hall Inc., New Jersey, Second Edition, pp. 40~74, 1996.
    17.W. Blum and G. B. Hogaboom, “Principles of Electroplating and Electroforming”, McGraw-Hill, New York, Third Edition, pp. 388~414, 1949.
    18.A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Application”, John Wiley & Sons, Inc., Second Edition, pp. 1~43, 2001.
    19.M. Paunovic and M. Schlesinger, “Fundamental of Electrochemical Deposition”, John Wiley & Sons, Inc, New York, pp. 73~106, 1998.
    20.A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Application”, John Wiley & Sons, Inc., Second Edition, pp. 44~86, 2001.
    21.F. A. lowenheim, “Electroplating”, McGraw-Hill, New York, pp. 113~166, 1978.
    22.M. Paunovic and M. Schlesinger, “Fundamental of Electrochemical Deposition”, John Wiley & Sons, Inc, New York, pp. 197~208, 1998.
    23.F. A. Lowenheim, “Modern Elctroplating”, published by The Electrochemical Society, Inc., New Jersey, Third Edition, pp. 1~45, 1974.
    24.W. Blum and G. B. Hogaboom, “Principles of Electroplating and Electroforming”, McGraw-Hill, New York, Third Edition, pp. 60~100, 1949.
    25.J. S. Newman, “Electrochemical Systems”, Prentice-Hall, Inc., Canada, pp. 340~352, 1973.
    26.Wayne M. Moreau, “Semiconductor Lithography – Principles, Practices, and Materials”, Plenum Press, New York, pp. 29~34, 1988.
    27.K. A. Valiev, “The Physics of Submicron Lithography”, Plenum Press, New York, pp. 395~462, 1992.
    28.J. D. Plummer, M. D. Deal and P. B. Griffin, “Silicon VLSI Technology”, Prentice Hall Inc., New Jersey, pp. 201~286, 2000.
    29.K. A. Valiev, “The Physics of Submicron Lithography”, Plenum Press, New York, pp. 1~72, 1992.
    30.Wayne M. Moreau, “Semiconductor Lithography – Principles, Practices, and Materials”, Plenum Press, New York, Chapter 3, 1988.
    31.J. W. Dini, “Electrodeposition - The Material Science of Coating and Substrate”, Noyes Publications, New Jersey, pp. 141~186, 1992.

    下載圖示 校內:2007-07-18公開
    校外:2007-07-18公開
    QR CODE