| 研究生: |
林志軒 Lin, Jhih-Syuan |
|---|---|
| 論文名稱: |
應用於無線感測網路之雙取樣超低功耗免外部時脈喚醒接收機 A Reference-Less Ultra-Low Power Wake-Up Receiver with Double-Sampling Technique for Wireless Sensor Networks |
| 指導教授: |
鄭光偉
Cheng, Kuang-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 喚醒接收機 、低功耗 、通斷鍵控 、雙取樣 、包絡偵測 、閃爍雜訊 、時脈與資料回復 、注入鎖定振盪器 |
| 外文關鍵詞: | Wake-up receiver, low power, on/off keying, double-sampling, envelope detection, 1/f noise, clock and data recovery, injection-locked oscillator |
| 相關次數: | 點閱:124 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個超低功耗通斷鍵控喚醒接收機架構,由於雙取樣技術和射頻增益級的被動放大,操作頻率為24億赫茲,資料速率為200 kbps,供應電壓為1伏特,喚醒接收機的靈敏度達-51.5 dBm,功率消耗為25微瓦,在不需要低雜訊放大器(LNA)、壓控振盪器(VCO)和外部時脈的情況下。
在射頻前端電路裡,利用包絡偵測器把射頻訊號直接降至基頻來取代傳統因壓控振盪器耗電的超外差技術;同樣地,用輸入匹配的被動放大特性來取代耗電的低雜訊放大器;在基頻帶裡,資料經過脈衝產生器(pulse generator)後產生時脈之頻率成分,然後注入時脈與資料回復(CDR)電路的振盪器,此振盪器輸出為位元時脈之頻率與注入訊號頻率相同。
由於閃爍雜訊(1/f noise)與頻率成反比,當射頻訊號直接降至基頻雖然可降低耗電量,卻也因閃爍雜訊的問題使得訊噪比降低,因此本論文想藉由雙取樣技術來移除閃爍雜訊,取樣的時脈不需從外部給,而是由時脈與資料回復電路所產生的位元時脈經過倍頻器後並且對射頻(RF)和中頻(IF)訊號取樣。本喚醒接收機除了外部匹配電路其餘皆完全製作於積體電路且使用90奈米台積電製程,晶片面積為1 × 0.95毫米平方。
This thesis presents an on/off keying wake-up receiver (WuRx) for ultra-low applications. Due to the double-sampling technique and passive amplification of the RF gain stage, the 2.4 GHz WuRx achieves -51.5 dBm sensitivity at 200 kbps while consuming 25 μW from a 1V supply without LNA, VCO and external reference frequency.
The envelope-detection technique is employed to eliminate the power-hungry LO generation in a super-heterodyne receiver. In addition, the passive amplification of the input matching network is employed to remove the power-thirsty LNA. At the baseband, the data is synchronized with the bit clock, which is generated from the clock and data recovery (CDR) circuit. The CDR consists of a clock recovery circuit (CRC) and D flip-flop. The CRC includes an injection-locked oscillator (ILO) and a short pulse generator. The clock is multiplied by 4 for generation of sampling clocks. The sampling clocks are used to sample the RF and IF signals to achieve a double-sampling technique and to remove 1/f noise and offset voltage. The WuRx is fully integrated except an external input matching network. A prototype is fabricated in 90 nm TSMC technology. The chip area is 1 × 0.95 mm2.
[1]I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393-422, Mar. 2002.
[2]J. M. Rabaey, M. J. Ammer, J. L. da Silva Jr., D. Patel, and S. Roundy, “Picoradio supports ad-hoc-low power wireless networking,” IEEE Computer, vol. 33, no. 7, pp. 42-48, July 2000.
[3]G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Communications of the ACM, vol. 43, no. 5, pp. 51-58, May 2000.
[4]A. Chandrakasan, R. Min, M. Bhardwaj, S.-H. Cho, and A. Wang, “Power aware wireless microsensor systems,” IEEE European Solid-State Circuits Conference, 2002, pp. 47-54.
[5]C. C. Enz, N. Scolari, and U. Yodprasit, “Ultra low-power radio design for wireless sensor networks,” IEEE International Workshop on Radio-Frequency Integration Technology, 2005, pp. 1-17.
[6]E.-Y. Lin, J. Rabaey, and A. Wolisz, “Power-efficient rendezvous schemes for dense wireless sensor networks,” IEEE International Conference on Communications, 2004, pp. 3769–3776.
[7]N. Pletcher and J. M. Rabaey, “Ultra-low power wake-up receivers for wireless networks,” EECS Department, University of California, Berkeley, Technical Report, UCB/EECS-2008-59, May 2008. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-59.html
[8]N. M. Pletcher, S. Gambini, and J. M. Rabaey, “A 2 GHz 52 µW wake-up receiver with -72dBm sensitivity using uncertain-IF architecture,” IEEE International Solid-State Circuits Conference, 2008, pp. 524-525.
[9]X.-C. Huang, P. Harpe, G. Dolmans, H. de Groot, and J. R. Long, “A 780–950 MHz, 64–146 µW power-scalable synchronized-switching OOK receiver for wireless event-driven applications,” IEEE Journal of Solid-State Circuits, vol. 49, no. 5, pp.1135-1147, May 2014.
[10]S. Moazzeni, M. Sawan, and G. E. R. Cowan, “An ultra-low-power energy-efficient dual-mode wake-up receiver,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 62, no. 2, pp. 517-526, Feb. 2015.
[11]J. Blanckenstein, J. Klaue, and H. Karl, “A survey of low-power transceivers and their applications,” IEEE Circuits and Systems Magazine, vol. 15, no. 3, pp. 6-17, Aug. 2015.
[12]M. Raju and M. Grazier, “Ultra low power meets energy harvesting: a game-changing combination for design engineers,” Texas Instruments, 2010.
[13]R. Brederlow, “Low frequency noise considerations for CMOS analog circuit design,” American Institute of Physics Conference, 2005, pp. 703-708.
[14]C. C. Enz, F. Krummenacher, and E. A. Vittoz, “An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications,” Analog Integrated Circuits and Signal Processing, vol. 8, no. 1, pp. 83-114, July 1995.
[15]K.-W. Cheng, X. Liu, and M.-K. Je, “A 2.4/5.8 GHz 10 μW wake-up receiver with -65/-50dBm sensitivity using direct active RF detection,” IEEE Asian Solid-State Circuits Conference, 2012, pp. 337-340.
[16]X.-C. Huang, G. Dolmans, H. de Groot, and J. R. Long, “Noise and sensitivity in RF envelope detection receivers,” IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 60, no. 10, pp. 637-641, Oct. 2013.
[17]X.-B. Qian, and T. H. Teo, “A low-power comparator with programmable hysteresis level for blood pressure peak detection,” IEEE TENCON Region 10 Conference, 2009, pp. 1-4.
[18]T. Wada, M. Ikebe, and E. Sano, “60 GHz, 9 µW wake-up receiver for short-range,” IEEE European Solid-State Circuits Conference, 2013, pp. 383-386.
[19]B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.
[20]B. M. Helal, C.-M. Hsu, K. Johnson, and M. H. Perrott, “A low jitter programmable clock multiplier based on a pulse injection-locked oscillator with a highly-digital tuning loop,” IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1391-1400, May 2009.
[21]B. Razavi, Design of Analog CMOS Integrated Circuits. New York, NY, USA: McGraw-Hill, 2001, p. 492.
[22]J. Pandey and B. P. Otis, “A sub-100 W MICS/ISM band transmitter based on injection-locking and frequency multiplication,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1049-1058, May 2011.
[23]I. Demirkol, C. Ersoy, and E. Onur, “Wake-up receivers for wireless sensor networks: benefits and challenges,” IEEE Wireless Communications, vol. 16, no. 4, pp. 88-96, Aug. 2009.
[24]X. Huang, S. Rampu, X. Wang et al., “A 2.4GHz/915MHz 51µW wake-up receiver with offset and noise suppression,” IEEE International Solid-State Circuits Conference, 2010, pp. 222-223.
[25]J. Choi, K. Lee, S.-O. Yun et al., “An interference-aware 5.8GHz wake-up radio for ETCS,” IEEE International Solid-State Circuits Conference, 2012, pp. 446-448.
[26]C. Hambeck, S. Mahlknecht, and T. Herndl, “A 2.4µW wake-up receiver for wireless sensor nodes with -71dBm sensitivity,” IEEE International Symposium on Circuits and Systems, 2011, pp. 534-537.
[27]F. Jonsson and H. Olsson, “RF detector for on-chip amplitude measurements,” Electronics Letters, vol. 40, no. 20, pp. 1239-1240, 2004.
[28]T. Kleeburg, J. Loo, N. J Guilar, E. Fong, R. Amirtharajah, “Ultra-low-voltage circuits for sensor applications powered by free-space optics,” IEEE International Solid-State Circuits Conference, 2010, pp. 502-504.
校內:2020-09-01公開