| 研究生: |
郭映彤 Kuo, Ying-Tung |
|---|---|
| 論文名稱: |
冷加工及熱處理對含銅抗菌304不銹鋼性質的影響 Effects of cold work and heat treatment on properties of copper containing antibacterial 304 stainless steel |
| 指導教授: |
劉浩志
Liu, Hao-Chih |
| 共同指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 304不銹鋼 、含銅抗菌不銹鋼 、富銅相 、衝壓 、拉伸 、熱處理 、抗菌檢測 、電化學特性 |
| 外文關鍵詞: | 304 stainless steel, Cu containing antibacterial stainless steel, Cu-rich phase, stamping, scratching, heat treatment, antibacterial test, electrochemical property |
| 相關次數: | 點閱:129 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
含銅抗菌304不銹鋼有效的抗菌特性、優良的耐蝕性質和良好的加工性使其被廣為應用在食品及醫療相關器具上,其抗菌機制為基材內富銅相和病原體接觸後釋放銅離子使病原體細胞膜及蛋白等功能損失並進一步導致死亡,然而經過衝壓或拉伸等冷加工後,富銅相因機械性質小於基材而累積較高的能量,使銅在加工過程中固溶到基材內,若富銅相縮小到不足以使不銹鋼表面的鈍化膜不連續,導致銅和病原體的接觸及銅離子的釋放受到阻礙,抗菌效果也將因此消失。在形變率增加的過程中,差排等缺陷在基材內堆積,造成應變硬化,且鈍態電流密度增加,表示鈍化膜越不穩定,同時易腐蝕的富銅相減少也造成耐點蝕能力上升。
三次衝壓過後的含銅304不銹鋼在600°C熱處理30分鐘後富銅相析出成長,使銅離子釋放和抗菌能力恢復、耐點蝕能力上升,而熱處理過程中缺陷回復使硬度下降、鈍態電流密度下降;經拉伸至應變率30%後的含銅304不銹鋼在650°C熱處理40分鐘後銅離子釋放量增加最多,且耐點蝕能力下降,代表富銅相在熱處理後增加或成長,而其晶粒在熱處理時進入再結晶階段並發生析出硬化。
綜合所有研究結果,本研究探討了含銅304不銹鋼在冷加工後抗菌能力消失的機轉,再利用適當的熱處理參數成功地使抗菌能力恢復,並探討其中冷加工及熱處理參數對含銅304不銹鋼抗菌效果、銅離子釋放能力、機械性質、微結構及電化學特性的影響。
Cu-containing 304 stainless steel has effective antibacterial properties, excellent corrosion resistance, and good processability, making it widely used in food and medical instruments. Its antibacterial mechanism involves the release of Cu ions upon contact with pathogens, leading to their functional loss and death. However, during cold working, Cu dissolved into matrix and reduce the size of Cu-rich phase, which result in passive film to cover the Cu-rich phase and hindering antibacterial activity. Increasing deformation causes strain hardening and passivation film instability. After stamped Cu-304 SS heat treated at 600°C, Cu-rich phase growth restores antibacterial ability and reduces corrosion resistance. Similarly, stretched Cu-304 SS heat treated at 650°C result in enhanced Cu ion release but decreased corrosion resistance. This study investigates the loss of antibacterial ability after cold working and successfully restores it through appropriate heat treatment, analyzing the effects on antibacterial effectiveness, Cu ion release, mechanical properties, microstructure, and electrochemical characteristics of Cu-containing 304 stainless steel.
[1] 東盟開發實業股份有限公司/財團法人成大研究發展基金會產學合作研究「馬氏體抗菌不銹鋼開發計畫」期末報告,中華民國一一零年六月。.
[2] J. A. Lemire, “Antibacterial activity of metals: mechanisms, molecular targets and applications,” Nat. Rev. Microbiol, vol. 11, pp. 371-384, 2013.
[3] K. L. Haas, and K. J. Franz, “Application of metal coordination chemistry to explore and manipulate cell biology,” Chem. Rev., vol. 109, pp. 4644–4681, 2009.
[4] Z. Ma, F. E. Jacobsen, and D. P. Giedroc, “Coordination chemistry of bacterial metal transport and sensing,” Chem. Rev., vol. 109, pp. 931-936, 2009.
[5] K. J. Waldron, and N. J. Robinson, “How do bacterial cells ensure that metalloproteins get the correct metal?,” Nat. Rev. Microbiol., vol. 7, pp. 25-35, 2009.
[6] K. J. Waldron, J. C. Rutherford, D. Ford, and N. J. Robinson, “Metalloproteins and metal sensing,” Nature, vol. 460, pp. 823–830, 2009.
[7] T. W. Clarkson, “Molecular and ionic mimicry of toxic metals,” Annu. Rev. Pharmacol. Toxicol., vol. 33, pp. 545–571, 1993.
[8] K. W. Jennette, “The role of metals in carcinogenesis: biochemistry and metabolism,” Environ. Health Persp., vol. 40, pp. 233-252, 1981.
[9] L. A. Finney, and T. V. O’Halloran, “Transition metal speciation in the cell: insights from the chemistry of metal ion receptors,” Science, vol. 300, pp. 931–936, 2003.
[10] M. L. Workentine, J. J. Harrison, P. U. Stenroos, H. Ceri, and R. J. Turner, “Pseudomonas fluorescens’ view of the periodic table,” Environ. Microbiol., vol. 10, pp. 238-250, 2008.
[11] J. J. Harrison, H. Ceri, and R. J. Turner, “Multimetal resistance and tolerance in microbial biofilms,” Nat. Rev. Microbiol, vol. 5, pp. 928–938, 2007.
[12] H. E. Allen, R. H. Hall, and T. D. Brisbin, “Metal speciation: effects on aquatic toxicity,” Environ. Sci. Technol., vol. 14, pp. 441-443, 1980.
[13] H. E. Allen, and D. J. Hansen, “The importance of trace metal speciation to water quality criteria,” Water Environ. Res., vol. 68, pp. 42-54, 1996.
[14] J. A. Imlay, S. M. Chin, and S. Linn, “ Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro,” Science, vol. 240, pp. 640–642, 1988.
[15] L. Macomber, C. Rensing, and J. A. Imlay, “Intracellular Cu does not catalyze the formation of oxidative DNA damage in Escherichia coli,” J. Bacteriol., vol. 189, pp. 1616–1626, 2007.
[16] J. J. Harrison, V. Tremaroli, M. A. Stan, C. S. Chan, C. Vacchi-Suzzi, B. J. Heyne, M. R. Parsek, H. Ceri, and R. J. Turner, “Chromosomal antioxidant genes have metal ion-specifc roles as determinants of bacterial metal tolerance,” Environ. Microbiol., vol. 11, pp. 2491–2509, 2009.
[17] S. L. Warnes, and C. W. Keevil, “Mechanism of Cu surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact,” Appl. Environ. Microbiol., vol. 77, pp. 6049–6059, 2011.
[18] A. Carrier, C. Nganou, D. Oakley, Y. Chen, K. Oakes, S. Macquarrie, and X. Zhang, Selective Generation of Singlet Oxygen in Chloride Accelerated Cu Fenton Chemistry, 2018.
[19] C. Waszczak, M. Carmody, and J. Kangasjärvi, “Reactive Oxygen Species in Plant Signaling,” Annual Review of Plant Biology, vol. 69, no. 1, pp. 209-236, 2018.
[20] J. A. Imlay, “Pathways of oxidative damage,” Annu. Rev. Microbiol., vol. 57, pp. 395–418, 2003.
[21] I. L. Calderón, A. O. Elías, E. L. Fuentes, G. A. Pradenas, M. E. Castro, F. A. Arenas, J. M. Pérez, and C. C. Vásquez, “Tellurite-mediated disabling of [4Fe–4S] clusters of Escherichia coli dehydratases,” Microbiology vol. 155, pp. 1840–1846, 2009.
[22] L. Macomber, and J. A. Imlay, “The iron-sulfur clusters of dehydratases are primary intracellular targets of Cu toxicity,” Proc. Natl. Acad. Sci. U.S.A., vol. 106, pp. 8344–8349, 2009.
[23] M. F. Poyton, A. M. Sendecki, X. Cong, and P. S. Cremer, “Cu2+ Binds to Phosphatidylethanolamine and Increases Oxidation in Lipid Membranes,” J. Am. Chem. Soc., vol. 138, pp. 1584, 2016.
[24] S. Banthia, C. Hazra, R. Sen, S. Das, and K. Das, “Electrodeposited functionally graded coating inhibits Gram-positive and Gram-negative bacteria by a lipid peroxidation mediated membrane damage mechanism,” Mater. Sci. Eng. C vol. 102, pp. 623-633, 2019.
[25] H. L. Karlssona, P. Cronholmb, Y. Hedbergc, M. T. d, L. D. Batticee, S. Svedheme, and I. O. Wallinder, “Cell membrane damage and protein interaction induced by Cu containing nanoparticles—Importance of the metal release process,” Toxicology, vol. 313, pp. 59-69, 2013.
[26] M. Kaladhar, V. Kambagowni, and C. S. Rao, “Machining of austenitic stainless steels - A review,” Int. J. Mach. Mach. Mater., vol. 12, pp. 178-192, 2012.
[27] A. Cook, and B. Brown, “The constitution of iron–nickel–chromium alloys at 550– 800 ゚C,” J. Iron Steel Inst., vol. 345, pp. 171, 1952.
[28] P. Barnard, Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, 2017.
[29] J. Diehl, “Zugverformung von Kupfer-Einkristallen,” I. Verfestigungskurven und Oberflächenerscheinungen, vol. 47, no. 5, pp. 331-343, 1956.
[30] H. Lange, and K. Lücke, “Störung der Gleitung bei Aluminium-Einkristallen,” International Journal of Materials Research, vol. 44, no. 11, pp. 514-527, 1953.
[31] S. R. Chen, and U. F. Kocks, "High-temperature plasticity in Cu polycrystals," Sponsor Org.: USDOE; USDOE, Washington, DC (United States).
[32] H. Mecking, and U. F. Kocks, “Kinetics of flow and strain-hardening,” Acta Metallurgica, vol. 29, no. 11, pp. 1865-1875, 1981.
[33] V. Shrinivas, S. K. Varma, and L. E. Murr, “Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling,” Metallurgical and Materials Transactions A, vol. 26, no. 3, pp. 661-671, 1995.
[34] T. Angel, “Formation of Martensite in Austenitic Stainless Steels Effects of Deformation, Temperature, and Composition,” J. Iron and Steel Inst., vol. 177, pp. 165-174, 1954.
[35] T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, and M. Ichihara, “An experimental study of the martensite nucleation and growth in 18/8 stainless steel,” Acta Metallurgica, vol. 25, no. 10, pp. 1151-1162, 1977.
[36] J. W. Brooks, M. H. Loretto, and R. E. Smallman, “In situ observations of the formation of martensite in stainless steel,” Acta Metallurgica, vol. 27, no. 12, pp. 1829-1838, 1979.
[37] J. W. Brooks, M. H. Loretto, and R. E. Smallman, “Direct observations of martensite nuclei in stainless steel,” Acta Metallurgica, vol. 27, no. 12, pp. 1839-1847, 1979.
[38] A. K. De, J. G. Speer, D. K. Matlock, D. C. Murdock, M. C. Mataya, and R. J. Comstock, “Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel,” Metallurgical and Materials Transactions A, vol. 37, no. 6, pp. 1875-1886, 2006.
[39] X. Li, Y. Wei, Z. Wei, and J. Zhou, “Effect of Cold Rolling on Microstructure and Mechanical Properties of AISI 304N Stainless Steel,” IOP Conference Series: Earth and Environmental Science, vol. 252, no. 2, pp. 022027, 2019.
[40] J. D. Yoo, and K.-T. Park, “Microband-induced plasticity in a high Mn–Al–C light steel,” Materials Science and Engineering: A, vol. 496, no. 1, pp. 417-424, 2008.
[41] A. Mitra, P. De, D. Bhattacharya, P. Srivastava, and D. Jiles, “Ferromagnetic properties of deformation-induced martensite transformation in AISI 304 stainless steel,” Metallurgical and Materials Transactions A, vol. 35, pp. 599-605, 2004.
[42] C. N. Hsiao, C. S. Chiou, and J. R. Yang, “Aging reactions in a 17-4Ph stainless steel,” Mater. Chem. Phys., vol. 74, pp. 132–42, 2002.
[43] P. Ratchev, B. Verlinden, P. v. Houtte, and P. d. Smet, “Precipitation hardening of an Al–42 wt% Mg–0.6 wt% Cu alloy,” Acta Mater., vol. 46, pp. 3523–33, 1998.
[44] I. Dieter, M. Gagliano, and M. Fine, “Interfacial Segregation at Cu-rich precipitates in a high strength low-carbon steel studied on a sub-nanometer scale,” Acta Mater., vol. 54, pp. 841–9, 2006.
[45] O. Kozo, O. Hiroshi, and A. Kazuo, “SANS Study of phase decomposition in Fe–Cu alloy with Ni and Mn addition,” ISIJ Int., vol. 34(4), pp. 346, 1994.
[46] S. Thompson, and G. Krauss, “Cu precipitation during continuous cooling and isothermal aging of a 710-type steels,” Metall. Mater. Trans., vol. 27, pp.:1573–88, 1996.
[47] E. Hornbogen, and R. Glenn, “A metallographic study of precipitation of Cu from alpha iron,” Trans. Metall. Soc. AIME, vol. 218, pp. 1064–70, 1960.
[48] C. Chi, H. Yu, and J. Dong, “The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application,” Prog. Nat. Sci., vol. 22, pp. 175–185, 2012.
[49] H. Li, T. Zhang, and T. Zhang, “Observation and analysis of ε-Cu phase in the antibacterial austenite stainless steel containing Cu,” Acta Metall. Sin., vol. 44, pp. 39–42, 2008.
[50] C. H. Koo, and I. T. Hong, “Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless,” Mater. Sci. Eng. A, vol. 393, pp. 213-222, 2005.
[51] K. Yang, and M. Q. Lu, “Antibacterial properties of an austenitic antibacterial stainless steel and its security for human body,” J. Mater. Sci. Technol., vol. 23, pp. 333–336, 2007.
[52] M. Murayama, Y. Katayama, and K. Hono, “Microstructural evolution in a 17-4 PH stainless steel after aging at 400 degrees C,” Metall. Mater. Trans. A, vol. 30, pp. 345–353, 1999.
[53] D. Isheim, S. Vaynman, and M. Fine, “Cu-precipitation hardening in a non-ferromagnetic face-centered cubic austenitic steel,” Scr. Mater., vol. 59, pp. 1235-1238, 2008.
[54] H. Ren, and W. Mao, “Precipitation behavior of B2-like particle in Fe–Cu binary alloy,” J. Magn. Magn. Mater., vol. 9(3), pp. 185-187, 2002.
[55] L. Ren, L. Nan, and K. Yang, “Study of Cu precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel,” Mater. Des., vol. 23, pp. 2374–2379, 2011.
[56] D. Wang, H. Yang, and L. Hou, “Research on precipitation sequence of Cu–Ni–Si alloy during aging,” Ordnance Mater. Sci. Eng., vol. 28, pp. 25-28, 2005.
[57] T. Harry, and D. Bacon, “Computer simulation of the core structure the <1 1 1> of screw dislocation in [alpha]–iron containing Cu precipitates: II dislocation-precipitate interaction and the strengthening effect,” Acta Mater., vol. 50, pp. 195-208, 2002.
[58] T. Tsuchiyama, S. Yamamoto, S. Hata, M. Murayama, S. Morooka, D. Akama, and S. Takaki, “Plastic deformation and dissolution of ε-Cu particles by cold rolling in an over-aged particle dispersion strengthening Fe-2mass%Cu alloy,” Acta Mater., vol. 113, pp. 48-55, 2016.
[59] P. Pyykko, “Additive Covalent Radii for Single-, Double-, and Triple-Bonded Molecules and Tetrahedrally Bonded Crystals: A Summary,” J. Phys., vol. 119, pp. 2326–2337, 2015.
[60] M. Starink, V. Abeels, and v. P. Mourik, “Lattice parameter and hardness variations resulting from precipitation and misfit accommodation in a particle-reinforced Al–Si–Cu–Mg alloy,” Mater. Sci. Eng. A, vol. 163, pp. 115-125, 1993.
[61] J. M. C. d. S. Filho, V. A. Ermakov, L. G. Bonato, A. F. Nogueira, and F. C. Marques, “Self-organized lead(II) sulfide quantum dots superlattice,” MRS Adv., vol. 15, pp. 841–846, 2017.
[62] S. I. Hong, and M. A. Hill, “Mechanical stability and electrical conductivity of Cu–Ag filamentary microcomposites,” Mater. Sci. Eng. A, vol. 264, pp. 151–8, 1999.
[63] F. Heringhaus, H.-J. Schneider-Muntau, and G. Gottstein, “Analytical modeling of the electrical conductivity of metal matrix composites application to Ag–Cu and Cu–Nb,” Mater. Sci. Eng. A, vol. 347, pp. 9–20, 2003.
[64] A. Zhang, J. Qiao, L. Li, and X. Zhang, “Microstructure and antibacterial properties of austenite antibacterial stainless steel,” Mater. Sci. Eng., vol. 26, pp. 669-672, 2006.
[65] P. Ahmat, Z. Fan, Q. Luo, and Y. Xu, “ Microstructure study on home-made modified 316L stainless steel,” Atom. Energy Sci. Tech., vol. 37, no. 18-21, 2003.
[66] F. Luo, Z. Tang, S. Xiao, and Y. Xiang, “Study on properties of Cu-containing austenitic antibacterial stainless steel,” Mater. Technol., vol. 34, pp. 525–533, 2019.
[67] K. Trethewey, and M. Paton, “Electrochemical impedance behavior of type 304L stainless steel under tensile loading,” Mater. Lett., vol. 58, pp. 3381–3384, 2004.
[68] S. Wang, C. Yang, M. Shen, and K. Yang, “Effect of aging on antibacterial performance of Cu-bearing martensitic stainless steel,” Mater. Technol., vol. 29, pp. 257-261, 2014.
[69] M. Bahmani-Oskooee, S. H. Nedjad, A. Samadi, and E. Kozeschnik, “Cu-bearing, martensitic stainless steels for applications in biological environments,” Mater. Des., vol. 130, pp. 442-451, 2017.
[70] G. y. m. technology, "Product quality certificate," YJ2021610, 2021.
[71] "Antibacterial products-Test for antibacterial activity and efficacy," Japanese Standards Association, 1998.
[72] "Evaluting Method for Efficacy of Antibacterial and Bacteriostasis," Nashinal health commission of the people's repubic of china, 2019.
[73] Z. Zhang, G. Lin, and Z. Xu, “Effects of light pre-deformation on pitting corrosion resis tance of Cu-bearing ferrite antibacterial stainless steel,” J. Mater. Process. Technol., vol. 205, pp. 419–424, 2008.
[74] X. Sauvage, N. Guelton, and D. Blavette, “Microstructure evolutions during drawing of a pearlitic steel containing 0.7 at.% Cu,” Scr. Mater., vol. 46, pp. 459-464, 2002.
[75] M. Asano, T. Masumura, T. Tsuchiyama, S. Takaki, J. Takahashi, and K. Ushioda, “Quantitative evaluation of Cu particle dissolution in cold-worked ferritic steel,” Scr. Mater., vol. 140, pp. 18-22, 2017.
[76] F. Y. Shaoheng Sun, Yifei Liu, Wei Zhang, Aimin Zhao, Qingyou Han “Deformation-induced dissolution of Cu precipitation in 1.5wt% Cu-bearing antibacterial Fe-17wt%Cr alloy during plastic deformation process,” Materials and Design, vol. 157, pp. 469-477, 2018.
[77] S. Jin, X. Cao, G. Cheng, X. Lian, T. Zhu, P. Zhang, R. Yu, and B. Wang, “Thermally promoted evolution of open-volume defects and Cu precipitates in the deformed FeCu alloys,” Journal of Nuclear Materials, vol. 501, pp. 293-301, 2018.
[78] A. F. Padilha, R. L. Plaut, and P. R. Rios, “Annealing of cold-worked austenitic stainless steels,” ISIJ international, vol. 43, no. 2, pp. 135-143, 2003.
[79] N. E. Adnan, “A study of hardness and the sensitization of nitrided martensitic stainless steel during cooling down process,” 2013.
[80] P. Pedeferri, "Pitting Corrosion," Corrosion Science and Engineering, P. Pedeferri, ed., pp. 207-230, Cham: Springer International Publishing, 2018.
[81] C. Nyby, X. Guo, J. E. Saal, S.-C. Chien, A. Y. Gerard, H. Ke, T. Li, P. Lu, C. Oberdorfer, S. Sahu, S. Li, C. D. Taylor, W. Windl, J. R. Scully, and G. S. Frankel, “Electrochemical metrics for corrosion resistant alloys,” Scientific Data, vol. 8, no. 1, pp. 58, 2021.
[82] Z. Ahmad, "CHAPTER 4 - TYPES OF CORROSION: Materials and Environments," Principles of Corrosion Engineering and Corrosion Control, Z. Ahmad, ed., pp. 120-270, Oxford: Butterworth-Heinemann, 2006.
[83] S. Weng, H. Cai, L. Zhao, and S. Zheng, “Microstructural change and corrosion variation of SAPH440 steel induced by pre-deformation,” Materials Express, vol. 9, pp. 610-615, 2019.
[84] D. Sprouster, W. Cunningham, G. Halada, H. Yan, A. Pattammattel, X. Huang, D. Olds, M. Tilton, Y. Chu, E. Dooryhee, G. Manogharan, and J. Trelewicz, “Dislocation Microstructure and Its Influence on Corrosion Behavior in Laser Additively Manufactured 316L Stainless Steel,” Additive Manufacturing, vol. 47, pp. 102263, 2021.
[85] C. Doerr, J.-Y. Kim, P. Singh, J. J. Wall, and L. J. Jacobs, “Evaluation of sensitization in stainless steel 304 and 304L using nonlinear Rayleigh waves,” NDT & E International, vol. 88, pp. 17-23, 2017.
[86] R. Pascali, A. Benvenuti, and D. Wenger, “Carbon Content and Grain Size Effects on the Sensitization of AISI Type 304 Stainless Steels,” Corrosion, vol. 40, no. 1, pp. 21-32, 1984.
[87] X. Zhang, J. Tang, H. Liu, and J. Gong, “Effects of pre-strain on sensitization and interganular corrosion for 304 stainless steel,” Engineering Failure Analysis, vol. 106, pp. 104179, 2019.
[88] S. Tokuda, I. Muto, Y. Sugawara, and N. Hara, “Effect of Sensitization on Pitting Corrosion at MnS and CrS in Type 304 Stainless Steel,” Journal of The Electrochemical Society, vol. 168, no. 9, pp. 091504, 2021.
[89] X. Fu, Y. Ji, X. Cheng, C. Dong, Y. Fan, and X. Li, “Effect of grain size and its uniformity on corrosion resistance of rolled 316L stainless steel by EBSD and TEM,” Materials Today Communications, vol. 25, pp. 101429, 2020.
校內:2028-07-01公開