簡易檢索 / 詳目顯示

研究生: 黃子鴻
Huang, Tzu-hung
論文名稱: 仿生魚鰭的幾何形狀對擺動推進系統之影響
The Effect of The Geometry of Bio-inspired Fin on Oscillating Propulsion System
指導教授: 陳政宏
Chen, Jeng-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 81
中文關鍵詞: 魚鰭仿生推進魚尾軸流場可視化
外文關鍵詞: bio-inspired propulsion, flow visualization, fish fin
相關次數: 點閱:144下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流體力學上,仿生推進是被重視的。本文主要是探討有關仿生推進在船隻上可能的應用。故研究仿魚鰭的推進方式,主要針對魚尾鰭的幾何形狀的變化,對魚尾鰭推力分布趨勢大小的影響。
    本實驗自行定義出二維三角幾何魚鰭系統,根據幾何的變化,比較魚鰭的推力趨勢,使用NBR 耐油橡膠作為魚鰭的材料,設計一擺動推進系統使魚鰭以正弦波的方式擺動,再以應變規量測系統測量魚鰭推力之時間變化。在實驗項目裡,主要研究三種魚鰭幾何形狀在不同振幅及不同擺角下的推進特性。同時利用流場可視化的技術來分析魚鰭作動方式。由實驗結果可得在單位面積下,魚鰭的幾何形狀以類似旗魚的尖銳型二叉尾推力最大,且在不同場合時,不同的魚鰭推力表現均會不同。魚鰭在擺動的運動方式中,平移方向的推力的重要性會比旋轉方向來的大;由可視化分析中可相互比較擺動速度、位移與魚鰭推力的時間變化,魚鰭的主要推力變化來自於擺動的運動模式;FFT的分析可確認魚尾鰭所產生的最大力量之頻率為擺動週期的兩倍。

    In the field of fluid mechanics, bio-inspired propulsion is important.The main purpose of this thesis is to investigate the possible application of bio-inspired propulsion in ships. Therefore, we study the propulsion
    method of bio-inspired fin by investigating the effect of the changes of geometry of fin to thrust trend.
    In our experiment, we define thin-triangle fin system. According to the changes of geometry, we compare the thrust trend of fin by using NBR rubber as the material of fin. We design one oscillation propulsion system that makes the fins oscillating in the sine wave form, and then
    measure fin thrust trend by strain gages measure system. As for the items of our experiment, we investigate the relationship of three types of fin geometry in condition of the same oscillate angles and different amplitude and in condition of the same amplitude and different angles.Meanwhile we use flow visualization to analyze the working mechanism of fin. In the oscillation method of fin, the importance of sway is greater than that of yaw. In the analysis of flow visualization, we can compare the trends of oscillation velocity, position, and fin thrust. We argue that the main thrust trend of fin comes from the oscillation of model. The analysis of FFT can help us confirm that the frequeucy of the maximum power of fin is the twice of swinging period.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1研究動機 1 1.2推進方式 1 1.3魚鰭功能 3 1.4文獻回顧 4 1.4.1魚類運動方式 4 1.4.2魚鰭推進實驗應用 6 1.4.3魚鰭流場 10 第二章 魚鰭系統 14 2.1魚體效率無因次參數 15 2.2魚鰭幾何參數 16 2.3魚尾幾何形狀定義 17 2.3.1真實魚類尾鰭幾何形狀 17 2.3.2人工定義尾鰭幾何形狀 18 第三章 實驗設備與條件規劃 20 3.1魚鰭推進實驗整體架構 20 3.2魚鰭擺動推進系統架構設計 22 3.2.1實驗架構組裝模擬 23 3.2.2實驗架構實體成型 25 3.3實驗條件規劃 29 3.3.1魚尾鰭幾何形狀變數 29 3.3.2魚尾軸長度變化 31 3.3.3魚鰭材料選用 32 3.3.4實驗條件 33 第四章 實驗種類與結果分析 34 4.1魚鰭推進實驗種類 34 4.2 魚鰭推力趨勢結果 35 4.2.1 P322系列魚鰭推力趨勢結果 35 4.2.2 P333系列魚鰭推力趨勢結果 37 4.2.3 P344系列魚鰭推力趨勢結果 39 4.2.4 魚鰭推力誤差分析 41 4.3 結果分析 42 4.3.1 整合分析 43 4.3.2 魚鰭幾何形狀分析 45 4.3.2.1 推力值分析魚鰭幾何形狀 46 4.3.2.2 以假設方式在單位面積下做魚鰭幾何比較 49 4.3.2.3以趨勢的方式分析推力分布 52 4.3.2.4魚鰭擺動推力機制 60 4.3.3 P333L魚鰭擺動週期性趨勢動作分析 64 4.3.3.1使用流場可視化方式分析魚鰭分解動作 65 第五章 結論及未來展望 77 5.1結論 77 5.2 未來展望 78 參考文獻 79 自述 81

    Beal, D. N.; Hover, F. S.; Triantafyllou, M. S.; Lial, J. C.and Lauder, G.
    V. J., “Passive propulsion in vortex wakes,” J. Fluid Mech., Vol. 549,
    pp. 385~402, 2006.
    Colgate, J. E.; Lynch, K. M., “Mechanics and Control of Swimming: A
    Review,” IEEE Journal of Oceanic Engineering, Vol. 29, No. 3, pp.
    660~673, 2004.
    Daniel Opila; Anuradha M. Annaswamy; Krol, W. P. and Surya Raghu,
    “Biomimetic Reduction of Wake Deficit Using Tail Articulation at
    Low Reynolds Number,” IEEE Journal of Oceanic Engineering, Vol.
    29, No. 3, pp. 766~776, 2004.
    Guo, S.; Fukuda, T., and Asaka, K., “A New Type of Fish-Like
    Underwater Microrobot Shuxiang,” IEEE/ASME Transations On
    Mechatronice, Vol. 8, No. 1, pp. 136~141, 2003.
    James, C. L.; Beal, D. N.; Lauder, G. V.; Michael, S. T., “Fish Exploiting
    Vortices Decrease Muscle Activity,” Science, Vol. 302, pp.
    1566~1569, 2003.
    Lauder, G. V.; Drucker, E. G., “Morphology and Experimental
    Hydrodynamics of Fish Fin Control Surfaces,” IEEE Journal Of
    Oceanic Engineering, Vol. 29, No. 3, pp. 556~571, 2004.
    Nauen, J. C. and Lauder, G.V., “ Hydrodynamics of caudal fin
    locomotion by chub mackerel,” Journal of Experimental Biology,
    Vol. 205, pp. 1709~1724, 2002.
    Nauen, J. C. and Lauder, G. V., “Quantification of the Wake of Rainbow
    Trout (Oncorhynchus Mykiss) Using Three-Dimensional
    Stereoscopic Digital Particle Image velocimetry,” Journal of
    Experimental Biology, Vol. 205, pp. 3271~3279, 2002.
    Promode, R. B., “Trends in Biorobotic Autonomous Undersea Vehicles,”
    IEEE Journal of Oceanic Engineering, Vol. 30, No. 1, pp. 109~139,
    2005.
    Terada, Y. and Yamamoto, I., “Development of Oscillating Fin Propulsion
    System and Its Application to Ships and Artificial Fish,” Mitsubishi
    Heavy Industries Ltd. Technical Review, Vol. 36, No. 3, pp. 84~88,
    1999.
    Triantafyllou, M. S.; Techet, A. H. and Hover, F. S., “Member, Review
    of Experimental Work in Biomimetic Foils,” IEEE Journal of
    Oceanic Engineering, Vol. 29, No. 3, pp. 585~594, 2004.
    80
    Triantafyllou, M. and Triantafyllou, G., “An efficient swimming
    machine,” Sci. Amer., Vol. 272, pp. 64~70, Mar. 1995.
    Yu, J.; Wang, S.; Tan, M., “A simplified propulsive model of
    bio-mimetic robot fish and its realization,” Robotica, Vol. 23, pp.
    101~107, 2005.
    李宗衛,“環驅式推進器之設計與流場特性”, 國立成功大學系統
    及船舶機電工程學系碩士論文,2006
    張哲群,“應用移動式質點影像處理速度儀於托航水槽船模實驗”,
    國立成功大學系統及船舶機電工程學系碩士論文,2004。
    羅忠文,“仿生形自主式水下載具之阻力推進性能研究”, 國立台
    灣大學造船及海洋工程學研究所碩士論文,2001。

    下載圖示 校內:2009-02-15公開
    校外:2009-02-15公開
    QR CODE