簡易檢索 / 詳目顯示

研究生: 陳典緯
Chen, Dian-Wei
論文名稱: 表面修飾氧化鋅奈米柱陣列於混成太陽能電池之應用
Surface Modification of ZnO Nanorod Array for Hybrid Solar Cells
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 171
中文關鍵詞: 氧化鋅奈米柱陣列表面修飾規則異質接面太陽能電池
外文關鍵詞: ZnO nanorod array, surface modification, order heterojunction solar cell
相關次數: 點閱:125下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成長單晶之氧化鋅奈米柱陣列(ZnO nanorod array)作為電子受體,提供電子一直接傳導路徑,再利用旋轉塗佈法填入聚(3-己基噻吩)[poly(3-hexylthiophene-2,5-diyl), P3HT]做為電子施體,組裝反轉型P3HT/氧化鋅奈米柱陣列異質接面太陽能電池。進一步以室溫化學浴法處理氧化鋅奈米柱陣列,使其應用於太陽能電池時能有更良好的電子傳導性質。此外,利用有機染料D149與SQ2修飾氧化鋅奈米柱陣列表面,藉以改善有機/無機介面不相容問題,並探討有機染料之偶極矩對於太陽能電池之影響。另一方面,將P3HT與富勒烯衍生物[(6,6)-phenyl-C61-butyric acid methyl ester, PC61BM]混合薄膜導入氧化鋅奈米柱陣列中,組裝有機/無機異質接面太陽能電池,藉由P3HT與PCBM之間的龐大界面面積提供激子解離,供光電流提升電池效率。本研究並分別利用電化學交流阻抗分析(electrochemical impedance spectroscopic, EIS)、光強度調制光電流分析儀(intensity modulated photocurrent spectroscopy, IMPS)與時間解析光激螢光光譜(time-resolved photoluminescence, TRPL)分析太陽能電池之載子再結合、電子傳輸與激子解離行為。經室溫化學浴法處理與D149染料修飾之P3HT/氧化鋅奈米柱陣列太陽能電池的電池效率可達1.16%,而P3HT:PCBM/氧化鋅奈米柱陣列太陽能電池效率可達1.55%。

    ZnO nanorod (NR) array/poly(3-hexylthiophene) (P3HT) heterojunction hybrid solar cells have been successfully fabricated in this study. The vertically aligned single crystal ZnO nanorod array was synthesized by chemical bath deposition (CBD) on ITO substrate. A novel room-temperature chemical bath deposition was employed to alter the surface of ZnO nanorod arrays for a short duration. The RT-modified ZnO nanorod arrays in ZnO NR/P3HT hybrid solars possess superior carrier transport property and interfacial recombination resistance with P3HT. Moreover, significant enhancement of the cell efficiency is achieved by further surface modification of ZnO nanorod array using organic dyes of D149 and SQ2. The open-circuit voltages of the solar cells are influenced by the adsorbed dye molecules, which is ascribed to energy band shift of the dye-modified ZnO. A efficiency of 1.16% is achieved in the D149 modified ZnO NR/P3HT solar cell. Electrochemical impedance spectroscopic (EIS) , intensity modulated photocurrent and spectroscopy (IMPS) and time-resolved photoluminescence (TRPL) are employed to investigate the interfacial recombination, carrier transport and exciton dissociation in the ZnO NR/P3HT solar cells, respectively. On the other hand, in the thesis, the P3HT:PCBM blend film was also infiltrated into ZnO NR to fabricate the hybrid solar cells. A lot amount of P3HT and PCBM interface is expected to increase large short-circuit current density and then improve the cell efficiency. A efficiency of 1.55% is achieved in the P3HT:PCBM/ZnO NR solar cell.

    誌謝 I 摘要 II Abstract III 目錄 IV 表目錄 IX 圖目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池簡介 2 1-3 研究動機 6 第二章 文獻回顧 7 2-1 異質接面太陽能電池(heterojunction solar cells)簡介 7 2-1-1 異質接面太陽能電池之工作原理 7 2-1-2 太陽能電池之電流密度與電壓特性 17 2-1-3 異質接面太陽能電池之發展 23 2-1-3-1 雙層異質接面結構 24 2-1-3-2 傳統型塊材異質接面結構 25 2-1-3-3 反轉型塊材異質接面結構 35 2-1-3-4 反轉型有機/無機混成之孔洞異質接面結構 37 2-1-3-5 反轉型有機/無機混成之規則異質接面結構 39 2-2 氧化鋅之性質、結構與應用 41 2-2-1 複層式(hierarchical)氧化鋅奈米結構 42 2-2-2 氧化鋅一維奈米結構於反轉型有機/無機混成太陽能電池之應用 49 2-2-3 P3HT:PCBM混合薄膜於一維半導體奈米結構之反轉型有機/無機混成太陽能電池的應用 59 2-3 聚(3-己基噻吩)(P3HT)之載子傳輸機制 62 2-4 電化學交流阻抗分析(electrochemical impedance spectroscopy, EIS)64 2-4-1 交流電路阻抗分析之基本原理 64 2-4-2 電化學交流阻抗分析應用於染料敏化太陽能電池 69 2-4-3 電化學交流阻抗分析應用於固態染料敏化太陽能電池 73 2-4-4 電化學交流阻抗分析應用於有機太陽能電池 76 2-5 光強度調制光電流分析(IMPS)與光強度調制光電壓分析(IMVS) 78 第三章 實驗步驟與研究方法 81 3-1 研究材料 81 3-1-1 成長氧化鋅奈米結構之材料 81 3-1-2 組裝有機/無機異質接面太陽能電池之材料 82 3-2 實驗流程 84 3-2-1 氧化鋅電洞阻擋層之披覆 85 3-2-2 成長氧化鋅奈米柱陣列 85 3-2-3 室溫化學浴法處理氧化鋅奈米柱陣列 86 3-2-4 染料修飾氧化鋅奈米柱陣列之表面 86 3-2-5 P3HT/氧化鋅奈米柱陣列異質接面太陽能電池之組裝 86 3-2-6 P3HT:PCBM/氧化鋅奈米柱陣列異質接面太陽能電池之組裝 ...87 3-3 分析與鑑定 88 3-3-1 掃描式電子顯微鏡分析(SEM) 88 3-3-2 穿透式電子顯微鏡分析(TEM) 90 3-3-3 X光繞射分析(X-Ray Diffraction Analysis) 92 3-3-4 拉曼光譜分析(Raman Spectroscopy) 93 3-3-5 紫外光-可見光(UV-Vis.)吸收光譜儀 95 3-3-6 時間解析光激螢光光譜儀 (TRPL) 96 3-3-7 太陽能電池效率量測 97 3-3-8 電化學交流阻抗分析(EIS) 98 3-3-9 光強度調制光譜分析(IMPS & IMVS) 100 第四章 氧化鋅奈米柱陣列之界面修飾及其應用於異質接面太陽能電池之研究 101 4-1 氧化鋅奈米柱陣列之成長與P3HT/氧化鋅奈米柱陣列異質接面太陽能電池 101 4-1-1 成長時間對氧化鋅奈米柱陣列形貌之影響 101 4-1-2 氧化鋅奈米柱結構分析與鑑定 106 4-1-3 P3HT/氧化鋅奈米柱陣列異質接面太陽能電池之最佳化 108 4-2 染料修飾界面對P3HT/氧化鋅奈米柱陣列異質接面太陽能電池之影響 111 4-2-1 染料修飾界面對太陽能電池VOC之影響 112 4-2-2 染料修飾界面對太陽能電池JSC之影響 115 4-2-2-1 UV-Vis.吸收光譜與EQE圖譜分析 115 4-2-2-2 時間解析螢光光譜分析(TRPL) 117 4-2-2-3 染料修飾對載子再結合與傳輸行為之影響 119 4-3 以室溫化學浴法處理氧化鋅奈米柱陣列 125 4-3-1 處理時間對氧化鋅奈米柱表面形貌之影響 125 4-3-2 氧化鋅奈米結構之分析與鑑定 126 4-4 以室溫化學浴法處理氧化鋅奈米柱陣列對P3HT/氧化鋅奈米柱陣列太陽能電池之影響 129 4-4-1 室溫化學浴法處理對太陽能電池VOC之影響 130 4-4-2 室溫化學浴法處理對太陽能電池JSC之影響 132 4-4-2-1 UV-Vis.吸收光譜、拉曼光譜與EQE圖譜分析 132 4-4-2-2 時間解析螢光光譜分析(TRPL) 135 4-4-3 室溫化學浴法處理對載子再結合與傳輸行為之影響 138 4-5 染料修飾界面對經室溫化學浴法處理之P3HT/氧化鋅奈米柱陣列異質接面太陽能電池之影響 143 4-5-1 染料修飾界面對太陽能電池VOC之影響 144 4-5-2 染料修飾界面對太陽能電池JSC之影響 146 4-5-2-1 UV-Vis.吸收光譜與EQE圖譜分析 146 4-5-2-2 時間解析螢光光譜分析(TRPL) 147 4-5-3 染料修飾界面對載子再結合與傳輸行為之影響 149 4-6 結論 153 第五章 PCBM:P3HT/氧化鋅奈米柱陣列太陽能電池 155 5-1 P3HT與PCBM混合比例對太陽能電池效率之影響 155 5-2 載子再結合與傳輸行為之分析 158 5-3 結論 161 第六章 總結論 162 第七章 參考文獻 164

    [01]M. Grätzel, “Powering of Planet”, Nature, 403, 363 (2000)
    [02]M. Grätzel, “Photoelectrochemical Cells”, Nature, 414, 338-344 (2001)
    [03]D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics, 25, 676-677 (1954)
    [04]Y. Zhou, M. Eck, and M. Krüger, “Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers”, Energy & Environmental Science, 3, 1851–1864 (2010)
    [05]B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353,737-740 (1991)
    [06]A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M Zakeeruddin, and M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency”, Science, 334, 629-634 (2011)
    [07]Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%”, Advanced Energy Materials, 22, E135–E138 (2010)
    [08]S. D. Oosterhout, M. M.Wienk, S. S. Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen, “The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells”, Nature Materials, 8, 818-824 (2009)
    [09]Y. Y. Lin, T. H. Chu, S. S. Li, C. H. Chuang, C. H. Chang, W. F. Su, C. P. Chang, M. W. Chu, and C. W. Chen, “Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells”, Journal of American Chemical Society, 131, 3644–3649 (2009)
    [10]S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency”, Nano Letters, 10, 239-242 (2010)
    [11] M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells”, Solar Energy Materials & Solar Cells, 92, 686–714 (2008)
    [12]J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, “Nanostructured Organic and Hybrid Solar Cells”, Advanced Materials, 23, 1810–1828 (2011)
    [13]M. T. Lloyd, C. H. Peters, A. Garcia, I. V. Kauvar, J. J. Berry, M. O. Reese, M. D. McGehee, D. S. Ginley, and D. C. Olson, “Influence of the hole-transport layer on the initial behavior and lifetime of inverted organic photovoltaics”, Solar Energy Materials & Solar Cells, 95, 1382–1388 (2011)
    [14]R. Zhu, C. Y. Jiang, B. Liu, and S. Ramakrishna, “Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free Organic Dye”, Advanced Materials, 21, 994–1000 (2009)
    [15]G. K. Mor, S. Kim, M. Paulose, O. K. Varghese, K. Shankar, J. Basham, and C. A. Grimes, “Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array-P3HT Based Heterojunction Solar Cells”, Nano Letters, 9, 4250-4257 (2009)
    [16]T. Xu, and Q. Qiao, “Conjugated polymer–inorganic semiconductor hybrid solar cells”, Energy & Environmental Science, 4, 2700–2720 (2011)
    [17]B. R. Saunders and M. L. Turner, “Nanoparticle–polymer photovoltaic cells”, Advances in Colloid and Interface Science, 138, 1-23 (2008).
    [18]A. Pivrikas, H. Neugebauer, and N. Serdar Sariciftci, “Charge Carrier Lifetime and Recombination in Bulk Heterojunction Solar Cells”, IEEE Journal of Selected Topics in Quantum Electronics, 16, 1746-1758 (2010)
    [19]W. Brütting, “Physics of Organic Semiconductors”, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2005
    [20]H. Bässler, “Charge transport in disordered organic photoconductors a monte carlo simulation study”, Physica Status Solidi B Basic Research, 175, 15–56 (1993)
    [21]J. L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular Understanding of Organic Solar Cells: The Challenges”, Accounts of Chemical Research, 42, 1691–1699 (2009)
    [22]C. J. Brabec, G. Zerza, G. Cerullo, S. D. Silvestri, S. Luzzati, J. C. Hummelen, and N. S. Sariciftci, “Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time”, Chemical Physics Letters, 340, 232–236 (2001)
    [23]I. W. Hwang, D. Moses, and A. J. Heeger, “Photoinduced Carrier Generation in P3HT/PCBM Bulk Heterojunction Materials”, Journal of Physical Chemistry C, 112, 4350-4354 (2008)
    [24]S. Westenhoff, L. A. Howard, J. M. Hodgkiss, K. R. Kirov, H. A. Bronstein, C. K. Williams, N. C. Greenham, and R. H. Friend, “Charge Recombination in Organic Photovoltaic Devices with High Open-Circuit Voltages”, Journal of American Chemical Society, 130, 13653–13658 (2008)
    [25]http://rredc.nrel.gov/solar/spectra/am1.5/
    [26]V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells”, Journal of Applied Physics, 94, 6849-6854 (2003)
    [27]C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells”, Advanced Functional Materials, 11, 374-389 (2001)
    [28]S. K. Hau, K. M. O’Malley, Y. J. Cheng, H. L. Yip, H. Ma, and A. K. Y. Jen, “Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells”, IEEE Journal of Selected Topics in Quantum Electronics, 16, 1665-1675 (2010)
    [29]C. W. Tang, “Two layer organic photovoltaic cell”, Applied Physics Letters, 48, 183-185 (1986)
    [30]G. Yu, K. Pakbaz and A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity”, Applied Physics Letters, 64, 3422-3424 (1994)
    [31]G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 270, 1789-1791 (1995)
    [32]S. H. Park, A. Roy, Se. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nature Photonics, 3, 297-303 (2009)
    [33]Y. Xahin, S. Alem, R. D. Bettignies, and J. M. Nunzi, “Development of air stable polymer solar cells using an inverted gold on top anode structure”, Thin Solid Films, 476, 340– 343 (2005)
    [34]http://en.wikipedia.org/wiki/Zinc_oxide/
    [35]S. Kaluza, M. K. Schröter, R. N. d’Alnoncourt, T. Reinecke, and M. Muhler, “High Surface Area ZnO Nanoparticles via a Novel Continuous Precipitation Route”, Advanced Functional Materials, 18, 3670–3677 (2008)
    [36]J. J. Wu and S. C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Advanced Materials, 14,215-218 (2002)
    [37]X. G. Wen, Y. P. Fang, Q. Pang, C. L. Yang, J. N. Wang, W. K. Ge, K. S. Wong, and S. H. Yang, “ZnO Nanobelt Arrays Grown Directly from and on Zinc Substrates: Synthesis, Characterization, and Applications”, Journal of Physical Chemistry B, 109, 15303-15308 (2005)
    [38]C. T. Wu, W. P. Liao, and J. J. Wu, “Three-dimensional ZnO nanodendrite/nanoparticle composite solar cells”, Journal of Material Chemistry, 21, 2871–2876 (2011)
    [39]J. Das and D. Khushalani, “Nonhydrolytic Route for Synthesis of ZnO and Its Use as a Recyclable Photocatalyst”, Journal of Physical Chemistry C, 114, 2544–2550 (2010)
    [40]Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Applied Physics Letters, 84, 3654-3656 (2004)
    [41]C. S. Lao, M. C. Park, Q. Kuang, Y. L. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant Enhancement in UV Response of ZnO Nanobelts by Polymer Surface-Functionalization”, Journal of American Chemical Society, 129, 12096-12097 (2007)
    [42]D. I. Suh, S. Y. Lee, J. H. Hyung, T. H. Kim, and S. K. Lee, “Multiple ZnO Nanowires Field-Effect Transistors”, Journal of Physical Chemistry C, 112, 1276-1281 (2008)
    [43]C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh , and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature”, Applied Physics Letters, 81, 3648-3650 (2002).
    [44]Z. L. Wang and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays”, Science, 312, 242-246 (2006).
    [45]C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode”, Applied Physics Letters, 90, 263501- (2007).
    [46]H. M. Cheng, W. H. Chiu, C. H. Lee, S. Y. Tsai, and W. F. Hsieh, “Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications”, Journal of Physical Chemistry C, 112, 16359–16364 (2008)
    [47]F. Xu, M. Dai, Y. N. Lu, and L. T. Sun, “Hierarchical ZnO Nanowire-Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells”, Journal of Physical Chemistry C, 114, 2776–2782 (2010)
    [48]C. T. Wu and J. J. Wu, “Room-temperature synthesis of hierarchical nanostructures on ZnO nanowire anodes for dye-sensitized solar cells”, Journal of Material Chemistry, 21, 13605-13610 (2011)
    [49]Y. J. Lee, M. T. Lloyd, D. C. Olson, R. K. Grubbs, P. Lu, R. J. Davis, J. A. Voigt, and J. W. P. Hsu, “Optimization of ZnO Nanorod Array Morphology for Hybrid Photovoltaic Devices”, Journal of Physical Chemistry C, 113, 15778–15782 (2009)
    [50]L. Baeten , B. Conings , H. G. Boyen , J. D’Haen , A. Hardy, M. D’Olieslaeger, J. V. Manca , and M. K. V. Bael, “Towards Efficient Hybrid Solar Cells Based on Fully Polymer Infiltrated ZnO Nanorod Arrays”, Advanced Materials, 23, 2802–2805 (2011)
    [51]Y. H. Sung , W. P. Liao , D. W. Chen , C. T. Wu , G. J. Chang , and J. J. Wu, “Room-Temperature Tailoring of Vertical ZnO Nanoarchitecture Morphology for Effi cient Hybrid Polymer Solar Cells”, Advanced Functional Materials, DOI: 10.1002/adfm.201200415 (2012)
    [52]P. Ruankham, L. Macaraig, T. Sagawa, H. Nakazumi, and S. Yoshikawa, “Surface Modification of ZnO Nanorods with Small Organic Molecular Dyes for Polymer_Inorganic Hybrid Solar Cells”, Journal of Physical Chemistry C, 115, 23809–23816 (2011)
    [53]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays”, Applied Physics Letters, 91, 152111 (2007)
    [54]J. Ajuria, I. Etxebarria, E. Azaceta, R. Tena-Zaera, N. Fernández-Montcada, E. Palomares, and R. Pacios, “Novel ZnO nanostructured electrodes for higher power conversion efficiencies in polymeric solar cells”, Physical Chemistry Chemical Physics, 13, 20871–20876 (2011)
    [55]B. Kippelen and J. L. Brédas, “Organic photovoltaics”, Energy Environ. Science, 2, 251–261 (2009)
    [56]M. Aryal, K. Trivedi, and W. C. Hu, “Nano-Confinement Induced Chain Alignment in Ordered P3HT Nanostructures Defined by Nanoimprint Lithography”, ACS Nano, 3, 3085–3090 (2009)
    [57]http://en.wikipedia.org/wiki/Electrical_impedance
    [58]A. J. Bard and L. F. Faulkner, “Electrochemical methods-Fundamentals and applications”, John Wiley & Sons, 368, 2001
    [59]R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions”, Electrochimica Acta, 47, 4213-4225 (2002)
    [60]J. Bisquert, “Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer”, Journal of Physical Chemistry B, 106, 325-333 (2002)
    [61]X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu, and S. Ramakrishna, “An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Material”, Advanced Materials, 22, E150–E155 (2010)
    [62]F. F. Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin, and M. Grätzel, “Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-OMeTAD as Hole Conductor”, Journal of American Chemical Society, 131, 558–562 (2009)
    [63]G. G. Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy”, Organic Electronics, 9, 847–851 (2008)
    [64]G. G. Belmonte, P. P. Boix, J. Bisquert, M. Sessolo, and H. J. Bolink, “Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy”, Solar Energy Materials & Solar Cells, 94, 366–375 (2010)
    [65]T. Oekermann, T. Yoshida, H. Minoura, K. G. U. Wijayantha, and L. M. Peter, “Electron transport and back reaction in electrochemically self-assembled nanoporous ZnO/Dye hybrid films.” Journal of Physical Chemistry B, 108, 8364-8370 (2004)
    [66]G. Franco, L. M. Peter, and E. A. Ponomarev, “Detection of inhomogeneous dye distribution in dye sensitized nanocrystalline solar cells by intensity modulated photocurrent spectroscopy(IMPS).”, Electrochemistry Communications, 1, 61–64 (1999)
    [67]汪建民,中國材料科學學會,材料分析
    [68]http://en.wikipedia.org/wiki/Raman_scattering/
    [69]謝嘉民,賴一凡,林永昌,枋志堯,光激發螢光量測的原理、架構及應用,奈米通訊,第十二期,第二卷,28-29 (2005)
    [70]S. Wu, Q. Tai, and F. Yan, “Hybrid Photovoltaic Devices Based on Poly (3-hexylthiophene) and Ordered Electrospun ZnO Nanofibers”, Journal of Physical Chemistry C, 114, 6197–6200 (2010)
    [71]B. Conings, L. Baeten, H. G. Boyen, D. Spoltore, J. D’Haen, L. Grieten, P. Wagner, M. K. V. Bael, and J. V. Manca, “Influence of Interface Morphology onto the Photovoltaic Properties of Nanopatterned ZnO/Poly(3-hexylthiophene) Hybrid Solar Cells. An Impedance Spectroscopy Study”, Journal of Physical Chemistry C, 115, 16695–16700 (2011)
    [72]L. Znaidi, G.J.A.A. Soler Illia, S. Benyahia, C. Sanchez, and A.V. Kanaev, “Oriented ZnO thin films synthesis by sol–gel process for laser application”, Thin Solid Films, 428, 257–262 (2003)
    [73]C. S. Li, Y. N. Li, Y. L. Wu, B. S. Ong, and R. O. Loutfy, “Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors”, Journal of Material Chemistry, 19, 1626–1634(2009)
    [74]B. S. Ong, C. S. Li, Y. N. Li, Y. L. Wu, and R. Loutfy, “Stable, Solution-Processed, High-Mobility ZnO Thin-Film Transistors”, Journal of American Chemical Society, 129, 2750-2751 (2007)
    [75]B. N. Pal, P. Trottman, J. Sun, and H. E. Katz, “Solution-Deposited Zinc Oxide and Zinc Oxide/Pentacene Bilayer Transistors: High Mobility n-Channel, Ambipolar, and Nonvolatile Devices”, Advanced Functional Materials, 18, 1832–1839 (2008)
    [76]Y. Zhou, W. B. Wu, G. D. Hu, H. T. Wu, and S. G. Cui, “Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine”, Materials Research Bulletin, 43, 2113–2118 (2008)
    [77]J. J. Qiu, X. M. Li, F. W. Zhuge, X. Y. Gan, X. D. Gao,W. Z. He, S. J. Park, H. K. Kim, and Y. H. Hwang, “Solution-derived 40 μm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells”, Nanotechnology, 21, 195602(2010)
    [78]S. S. Pandey, K. Y. Lee, A. Hayat, Y. Ogomi, and S. Hayase, “Investigating the Role of Dye Dipole on Open Circuit Voltage in Solid-State Dye-Sensitized Solar Cells”, Japanese Journal of Applied Physics, 50, 06GF08 (2011)
    [79]M. K. Wang, Carole Grätzel, S. J. Moon, R. H. Baker,N. R. Iten, S. M. Zakeeruddin, and Michael Grätzel, “Surface Design in Solid-State Dye Sensitized Solar Cells:Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance”, Advanced Functional Materials, 19, 2163–2172 (2009)
    [80]W. C. Tsoi, D. T. James, J. S. Kim, P. G. Nicholson, C. E. Murphy, D. D. C. Bradley, J. Nelson, and J. S. Kim, “The Nature of In-Plane Skeleton Raman Modes of P3HT and Their Correlation to the Degree of Molecular Order in P3HT:PCBM Blend Thin Films”, Journal of the American Chemical Society, 133, 9834–9843 (2011)
    [81]N. Tétreault, E. Horváth, T. Moehl, J. Brillet, R. Smajda, S. Bungener, N. Cai, P. Wang, S. M. Zakeeruddin, L. Forrό , A. Magrez, and M. Grätzel, “High- Efficiency Solid-State Dye-Sensitized Solar Cells:Fast Charge Extraction through Self-Assembled 3D Fibrous Network of Crystalline TiO2 Nanowires”, ACS Nano, 4, 7644-7650 (2010)

    下載圖示 校內:2022-01-01公開
    校外:2022-01-01公開
    QR CODE