簡易檢索 / 詳目顯示

研究生: 翁紹棋
Weng, Shao-Chi
論文名稱: 並聯結構的垂直三波段金屬-半導體-金屬紫外光光檢測器
Vertical Triple-Bands Metal-Semiconductor-Metal Ultraviolet Photodetectors in Parallel Structure
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 94
中文關鍵詞: 並聯結構的垂直三波段金屬-半導體-金屬紫外光光檢測器氧化鋅二氧化鈦氧化鎵並聯結構低溫氣相冷凝系統
外文關鍵詞: zinc oxide, titanium dioxide, gallium oxide, triple-bands metal-semiconductor-metal ultraviolet photodetectors, parallel structure, vapor cooling condensation system
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract IV 致謝 XV 目錄 XVII 表目錄 XXII 圖目錄 XXIII 第一章 序論 1 1.1 氧化鋅材料的發展 1 1.2 二氧化鈦材料的發展 2 1.3 氧化鎵材料的發展 2 1.4 紫外光光檢測器之簡介與應用 3 1.5 研究動機 5 參考文獻 8 第二章 實驗與原理介紹 14 2.1 金屬-半導體接面理論 14 2.1.1 歐姆接觸 14 2.1.2 蕭基接觸 15 2.2 光檢測器之相關原理 18 2.2.1 光吸收與光放射 18 2.2.2 薄膜穿透率與光學能隙計算 19 2.3 金屬-半導體-金屬紫外光光檢測器相關原理 20 2.3.1 金屬-半導體-金屬紫外光光檢測器工作原理 20 2.3.2 電流-電壓特性曲線 21 2.3.3 光檢測器之響應度量測 22 2.4 低頻雜訊 23 2.4.1 閃爍雜訊 23 2.4.2 熱雜訊 24 2.4.3 產生-復合雜訊 25 2.4.4 等效功率雜訊及偵測度 25 參考文獻 32 第三章 元件製程與製程及量測機台 34 3.1 製程機台 34 3.1.1 低溫氣相冷凝系統 34 3.1.2 電子束蒸鍍系統 35 3.2 量測機台 35 3.2.1 UV-VIS-NIR 分光光譜儀 35 3.2.2 光致發光量測系統 36 3.2.3 光響應度量測系統 36 3.2.4 低頻雜訊量測系統 37 3.2.5 高解析掃描式電子顯微鏡(High Resolution Scanning Electron Microscope) 37 3.3 元件製程 38 3.3.1 藍寶石基板清潔 38 3.3.2 黃光微影定義吸收層圖形 39 3.3.3 鍍製氧化鋅/二氧化鈦/氧化鎵吸收層 40 3.3.4 黃光微影定義阻擋層光阻圖形 41 3.3.5 溼式蝕刻吸收層圖形 42 3.3.6 黃光定義指叉狀電極圖形 42 3.3.7 鍍製指叉狀電極 43 參考文獻 50 第四章 元件特性量測及分析 52 4.1 薄膜分析 52 4.1.1 吸收層薄膜之穿透、能隙分析 52 4.1.2 吸收層之光製發光光譜儀分析 53 4.2 單波段金-半-金紫外光檢測器單顆與並聯比較 53 4.2.1 氧化鋅吸收層單顆與並聯元件光暗電流比較 53 4.2.2 氧化鋅吸收層單顆與並聯元件響應度與紫外光-可見光拒斥比比較 54 4.2.3 不同入射光強度照射氧化鋅吸收層元件後光電流與元件響應度變化 54 4.2.4 二氧化鈦吸收層單顆與並聯元件光暗電流比較 55 4.2.5 二氧化鈦吸收層單顆與並聯元件響應度與紫外光-可見光拒斥比比較 55 4.2.6 不同入射光強度照射二氧化鈦吸收層元件後光電流與元件響應度變化 56 4.2.7 氧化鎵吸收層單顆與並聯元件光暗電流比較 57 4.2.8 氧化鎵吸收層單顆與並聯元件響應度與紫外光-可見光拒斥比比較 57 4.2.9 不同入射光強度照射二氧化鈦吸收層元件後光電流與元件響應度變化 58 4.3 三波段金-半-金紫外光光檢測器單顆與並聯比較 58 4.3.1 三波段金-半-金紫外光光檢測器單顆與並聯元件光暗電流比較 58 4.3.2 三波段金-半-金紫外光光檢測器單顆與並聯元件響應度與紫外光-可見光拒斥比 59 4.4 三波段金-半-金紫外光光檢測器蝕刻後單顆與並聯元件比較 60 4.4.1 三波段金-半-金紫外光光檢測器蝕刻後單顆與並聯結構光暗電流比較 60 4.4.2 三波段金-半-金紫外光光檢測器蝕刻後單顆與並聯元件響應度與紫外光-可見光拒斥比比較 60 4.5 三波段金-半-金紫外光光檢測器有無蝕刻之響應時間比較 61 4.6 低頻雜訊 62 第五章 結論 92

    第一章
    [1]A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong and W. Huang, “Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition,” Appl. Phys. Lett., vol. 89, pp. 123902-1-123902-3, 2006.
    [2]X. D. Chen, C. C. Ling, S. Fung, C. D. Beling, Y. F. Mei, R. K. Y. Fu, G. G. Siu and P. K. Chu, “Current transport studies of ZnO/p-Si heterostructures grown by plasma immersion ion implantationand deposition,” Appl. Phys. Lett., vol. 88, pp. 132104-1-132104-3, 2006.
    [3]H. Frenzel, M. Lorenz, A. Lajn, H. von Wenckstern, G. Biehne, H. Hochmuth and M. Grundmann, “ZnO-based metal-semiconductor field-effect transistors on glass substrates,” Appl. Phys. Lett., vol. 95, pp.153503-1-153503-3, 2009.
    [4]K. Lee, J. H. Kim and S. Im, “Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer die-lectric,” Appl. Phys. Lett., vol. 88, pp.023504-1-023504-3, 2006.
    [5]R. W. Chuang, R. X. Wu, L. W. Lai and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling conden-sation technique,” Appl. Phys. Lett., vol. 91, pp.231113-1-231113-3, 2007.
    [6]C. Y. Lu, S. J. Chang, S. P. Chang, C. T. Lee, C. F. Kuo, H. M. Chang, Y. Z. Chiou, C. L. Hsu and I. C. Chen, “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates,” Appl. Phys. Lett., vol. 89, pp.153101-1-153101-3, 2006.
    [7]E. S. P. Leong, S. F. Yu and S. P. Lau, “Directional edge-emitting UV random laser diodes,” Appl. Phys. Lett., vol. 89, pp. 221109-1-221109-3, 2006.
    [8]H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique,” J. Appl. Phys., vol. 108, pp. 073119-1-073119-6, 2010.
    [9]J. Y. Li, S. P. Chang, M. H. Hsu and S. J. Chang,” Influence of An-nealing Ambience on TiO2 Film Ultraviolet Photodetector,” ECS J. Solid State Sci. Technol., vol. 6, pp. Q3056-Q3060, 2017.
    [10]C. S. Kim, J. W. Shin, S. H. An, H. D. Jang and T. O. Kim, “Photo-degradation of volatile organic compounds using zirconium-doped TiO2/SiO2 visible light photocatalysts,” Chem. Eng. J., vol. 204, pp. 40-47, 2012.
    [11]H. Hirashima and T. Kusaka, “Structure of TiO2 sol-gel coatings,” Proc. SPIE 1758, Sol-Gel Optics II, 1992.
    [12]V. M. Ramakrishnan, N. Muthukumarasamy, P. Balraju, S. Pitchaiya, D. Velauthapillai and A. Pugazhendhi, “Transformation of TiO2 na-noparticles to nanotubes by simple solvothermal route and its per-formance as dye-sensitized solar cell (DSSC) photoanode,” Int. J. Hydrog. Energy, vol. 45, pp. 15441-15452, 2020.
    [13]Y. G. Han, C. C. Fan, G. Wu, H. Z. Chen and M. Wang, “Low-temperature solution processed utraviolet photodetector based on an ordered TiO2 nanorod array-polymer hybrid,” J. Phys. Chem. C., vol. 115, pp. 13438-13445, 2011.
    [14]M. Pfanzelt, P. Kubiak, M. Fleischhammer and M. Wohlfahrt-Mehrens, ” TiO2 rutile-an alternative anode material for safe lithium-ion batteries,” J. Power Sources, vol. 196, pp. 6815-6821, 2011.
    [15]H. Y. Lee, J. T. Liu and C. T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors,” IEEE Photonics Technol. Lett., vol. 30, pp. 549-552, 2018.
    [16]S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer and M. A. Mastro, “A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev., vol. 5, pp.011301-1-011301-56, 2018.
    [17]M. Mohamed, I. Unger, C. Janowitz, R. Manzke, Z. Galazka, R. Uecker and R. Fornari, “The surface band structure of β-Ga2O3,” J. Phys. Conf. Ser., vol. 286, pp. 012027-1-012027-9, 2011.
    [18]H. He, M. A. Blanco and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett., vol. 88, pp. 261904-1-261904-3, 2016.
    [19]C. H. Lin and C.T. Lee, ”Ga2O3-based solar -blind deep ultraviolet light -emitting diodes,” J. Lumines., vol. 224, pp. 117326-1-117326-4, 2020.
    [20]C. G. Tian, D. Y. Jiang, Y. J. Zhao, Q. F. Liu, J. H. Hou, J. X. Zhao, Q. C. Liang, S. Gao and J. M. Qin, “Effects of continuous annealing on the performance of ZnO based metal–semiconductor–metal ultravi-olet photodetectors,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Ma-ter., vol. 184, pp. 67-71, 2014.
    [21]R.C. Boutwell, M. Wei, A. Scheurer, J.W. Mares and W.V. Schoen-feld, “Optical and structural properties of NiMgO thin films formed by sol–gel spin coating,” Thin Solid Films, vol. 520, pp. 4302-4304, 2012.
    [22]Z. G. Ji, Z. P. He, K. Liu, S. C. Zhao and Z. J. He, “Synthesis of MgxNi1-xO thin films with a band-gap in the solar-blind region,” J. Cryst. Growth, vol. 273, pp. 446-450, 2005.
    [23]Z. D. Huang, W. Y. Weng, S. J. Chang, Y. F. Hua, C. J. Chiu and T. Y. Tsai, “Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles,” IEEE Photonics Technol. Lett., vol. 25, pp. 1809-1811, 2013.
    [24]S. Singh and S. H. Park, “Fabrication and characterization of Al:ZnO based MSM ultraviolet photodetectors,” Superlattices Microstruct., vol. 86, pp. 412-417, 2015.
    [25]E. Monroy, E. Muñoz, F J Sanchez, F. Calle, E. Calleja, B. Beaumont, P. Gibart, J. A. Munoz and F. Cusso, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol., vol. 13, pp. 1042-1046, 1998.
    [26]K. Wang, Y. Vygranenko and A. Nathan, “ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study,” J. Appl. Phys., vol. 101, pp. 114508-1-114508-5, 2007.
    [27]Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov and H. Temkin, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection,” Appl. Phys. Lett., vol. 70, pp. 2277-2279, 1997.
    [28]Z. Y. Yin, H. Li, H. Li, L. Jiang, Y. M. Shi, Y. H. Sun, G. Lu, Q. Zhang, X. D. Chen and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano., vol. 6, pp. 74-80, 2012.
    [29]S. Bourquin, P. Seitz and R. P. Salathe, “Optical coherence topog-raphy based on a two-dimensional smart detector array,” Opt. Lett., vol. 26, pp. 512-514, 2001.
    第二章
    [1]S. M. Sze, “Physics of semiconductor devices 2nd,” 1987.
    [2]S. M. Sze and K. K. Ng, “Physics of semiconductor devices: John wiley & sons”, 2006.
    [3]S. M. Sze, “Semiconductor device physics and technology,” 2002.
    [4]Neamen, “Semiconductor photonics principles and practices,” 2003.
    [5]K. Lee, M. Shur, T. A. Fjeldly and T. Ytterdal, “Semiconductor de-vices modeling for VLSI,” Prentice Hall, New Jersey, 1997.
    [6]S. M. Sze, D. J. Coleman JR. and A. Loya, “Current transport in metal-semiconductor-metal structures,” Solid-State Electron., vol. 14, pp. 1209-1218, 1971.
    [7]S. M. Sze, “Semiconductor device physics and technology 2nd edition,” Wiley, chap.9.1, 2001.
    [8]S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C, vol.117, pp. 4194-4200, 2013.
    [9]A. A. Akl and S. A. Mahmoud, “Effect of growth temperatures on the surface morphology, optical analysis, dielectric constants, electric susceptibility, urbach and bandgap energy of sprayed NiO thin films,” Optik., vol. 172, pp. 783-793, 2018.
    [10]S. V. Averine, Y. C. Chan and Y. L. Lam, “Geometry optimization of interdigitated Schottky-barrier metal-semiconductor-metal photodi-ode structures,” Solid-State Electron., vol. 45, pp. 441-446, 2001.
    [11]R. H. Yuang and J. I. Chyi, “Effects of finger width on large-area In-GaAs MSM photodetectors,” Electron. Lett., vol. 32, pp. 131-132, 1996.
    [12]H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo and M. Umeno, “Back-illuminated GaN metal-semiconductor- metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505-L507, 2001.
    [13]S. O. Kasap, “Optoelectronics and photonics principles and practices,” 2001.
    [14]陳方中,”有機光電流增益現象之探討與其在光偵測器的應用研究成果報告”行政院國家科學委員會專題研究計畫, pp.6-7, 2001.
    第三章
    [1]H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low tem-perature by vapor cooling condensation technique,” J. Appl. Phys., vol. 108, pp. 073119-1-073119-6, 2010.
    [2]C. H. Lin and C. T. Lee, “Ga2O3-based solar -blind deep ultraviolet light -emitting diodes,” J. Lumines., vol. 224, pp. 117326-1-117326-4, 2020.
    [3]R. R. Kumar, M. R. Sekhar, Raghvendra, R. Laha and S. K. Pandey, “Comparative studies of ZnO thin films grown by electron beam evaporation, pulsed laser and RF sputtering technique for optoelec-tronics applications,” Appl. Phys. A-Mater. Sci. Process., vol. 126, pp. 859-1-859-10, 2020.
    [4]A. El Shaer, A. Bakin, A. C. Mofor, J. Blasing, A. Krost, J. Stoimenos, B. Pecz, M. Kreye and A. Waag, “H2O2-molecular beam epitaxy of high quality ZnO,” Appl. Phys. A-Mater. Sci. Process., vol. 88, pp. 57-60, 2007.
    [5]Q. C. Bui, G. Ardila, E. Sarigiannidou, H. Roussel, C. Jimenez, O. Chaix-Pluchery, Y. Guerfi, F. Bassani, F. Donatini, X. Mescot, B.Salem and V. Consonni, “Morphology transition of ZnO from thin film to nanowires on silicon and its correlated enhanced zinc polarity uniformity and piezoelectric responses,” ACS Appl. Mater. Interfaces, vol. 12, pp. 29583-29593, 2020.
    [6]H. S. Min and Y. A. Douri, “Metal chalcogenide nanostructures: characteristics and synthesis,” OMICS International, 2019.
    [7]V. R. Aline, O. Marcelo and Orlandi, “Study of intense photolumi-nescence from mondispersed beta-Ga2O3 ellipsoidal structures,” Ce-ram. Int., vol. 45, pp. 5023-5029, 2019.
    [8]羅聖全, "科學基礎研究之重要利器—掃描式電子顯微鏡(SEM)," 科學研習, vol. 52, no. 5, pp. 4-6, 2013.

    無法下載圖示 校內:2026-11-02公開
    校外:2026-11-02公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE