簡易檢索 / 詳目顯示

研究生: 張浩原
Jang, Hau-Yuan
論文名稱: 最大右環商與質環上的李同構
on maximal right rings of quotients and Lie isomorphisms of prime rings
指導教授: 柯文峰
Ke, Wen-Fong
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 68
中文關鍵詞: 環商李同構
外文關鍵詞: rings of quotient, Lie isomorphism
相關次數: 點閱:101下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 令 R 是一個左零化子為零的環。在這種情況下,我們可以構造一個包含 R 的更大的環, Qmr(R)。在本文中,我們討論了 Qmr(R) 的一些性質,提供了一些相關的例子,並回顧了 Martindale 以此一結構在質環上的李同構的經典應用。

    Let R be a ring with zero left annihilator. In this case, one can construct a larger ring Qmr(R) which contains R. In this thesis, we discuss some properties of Qmr(R), provide some pertinent examples, and review a classical application to Lie isomorphisms on prime rings made by Martindale.

    中文摘要 i Abstract ii Acknowledgements iii Contents iv List of Symbols v 1 Introduction 1 2 Dense right ideals 4 3 Maximal rings of quotients 10 4 Some examples 19 5 Some relative properties 23 6 Lie isomorphisms of prime rings 42 6.1 The images ϕ(e 1 ) and ϕ(e 2 ) 46 6.2 Further cases splitting 48 6.3 Case 1. ϕ(e i ) = c i + f i 54 6.4 Case 2. ϕ(e i ) = c i − f i 64 References 67

    Beidar, K. I.; Bre¨ar, M.; Chebotar, M. A.; Martindale, W. S., III On Herstein's Lie map conjectures. I. Trans. Amer. Math. Soc. 353 (2001), no. 10, 4235–4260.

    Beidar, K. I.; Bre¨ar, M.; Chebotar, M. A.; Martindale, W. S., 3rd On Herstein’s Lie map conjectures. II. J. Algebra 238 (2001), no. 1, 239–264.

    Beidar, K. I.; Bre¨ar, M.; Chebotar, M. A.; Martindale, W. S., 3rd On Herstein’s Lie map conjectures. III. J. Algebra 249 (2002), no. 1, 59–94.

    Beidar, K. I.; Martindale, W. S., III; Mikhalev, A. V. Rings with generalized identities. Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.

    Erickson, Theodore S.; Martindale, Wallace S., 3rd; Osborn, J. Marshall Prime nonassociative algebras. Pacific J. Math. 60 (1975), no. 1, 49–63.

    Findlay, G. D.; Lambek, J. A generalized ring of quotients. I, II. Canad. Math. Bull. 1 (1958), 77–85, 155–167.

    Herstein, I. N. Lie and Jordan structures in simple, associative rings. Bull. Amer. Math. Soc. 67 (1961), 517–531.

    Herstein, I. N. Topics in ring theory. University of Chicago Press, Chicago, Ill.- London 1969.

    Hua, L. K. A theorem on matrices over a field and its applications, Acta Math. Sinica 1 (1951) 109–163.

    Lam, T. Y. A first course in noncommutative rings. Second edition. Graduate Texts in Mathematics, 131. Springer-Verlag, New York, 2001.

    Lambek, Joachim Lectures on rings and modules. Second edition. Chelsea Publishing Co., New York, 1976.

    Martindale, Wallace S., III Lie isomorphisms of primitive rings. Proc. Amer. Math. Soc. 14 (1963), 909–916.

    Martindale, Wallace S., III Lie isomorphisms of prime rings. Trans. Amer. Math. Soc. 142 (1969), 437–455

    McCoy, Neal H. The theory of rings. Reprint of the 1964 edition. Chelsea Publishing Co., Bronx, N.Y., 1973.

    Utumi, Yuzo On quotient rings. Osaka Math. J. 8 (1956), 1–18.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE