簡易檢索 / 詳目顯示

研究生: 李俊頡
Lee, Chun-Chieh
論文名稱: 於第二型雙極性疾患中,建立丙戊酸治療反應之預測因子:針對GNB3基因型及C反應蛋白
Predicting factors for valproate treatment outcome among bipolar II patients – focused on GNB3 and CRP level
指導教授: 張惠華
Chang, Hui-Hua
共同指導教授: 陳柏熹
Chen, Po-See
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 255
中文關鍵詞: 丙戊酸第二型雙極性疾患GNB3基因C-反應蛋白
外文關鍵詞: Valproate, Bipolar II disorder, GNB3, C-reactive protein
相關次數: 點閱:132下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景:丙戊酸(valproate)是種用來治療第二型雙極性疾患的情緒穩定劑,然而某些病患使用丙戊酸之後會出現代謝異常的副作用。基因與環境因子可能牽涉到病患個體間是否產生代謝異常的現象。造成代謝異常的基因因子包含了:PPAR-γ基因、瘦素受體基因、G蛋白相關的基因…等;其中,GNB3基因位於異三元體G蛋白中的β3次單元之中,而這個次單元是個與代謝調節有關的胞內訊息傳遞重要因子。除此之外,在環境因子的部分,C反應蛋白,一個用來偵測發炎反應的敏感因子,在過去的研究中,跟雙極性疾患的致病與代謝異常相關。於雙極性疾患的用藥中添加美金剛 (memantine),一種抗發炎藥物,或許能改善代謝異常的狀況。然而,目前尚未有研究針對GNB3基因多型性及C反應蛋白濃度作為預測第二型雙極性疾患服用丙戊酸後治療反應的因子。

    研究材料與方法:18到65歲的病人只要符合精神疾病診斷與統計手冊第四版(DSM-IV)、及中文版的終生精神疾病診斷晤談手冊(SADS-L) 的第二型雙極性疾患診斷,於簽署受試者同意書後,會被有受過訓練的精神科醫師收錄進本研究中。此外,這些病患在尚未用藥前的漢氏憂鬱量表分數必須要大於18分,在臨床上代表著這些病患是處於憂鬱階段的雙極性疾患。所有被收錄進來的病人都會隨機被分配到丙戊酸加上安慰劑組或是丙戊酸加上美金剛組。另一方面,本篇研究會於早上8到10點抽病人的靜脈血,這些血液樣本會用來檢測代謝指標、C反應蛋白及GNB3 C825T的基因型。此外,病人的身體質量指數(BMI)、腰圍、疾病嚴重程度及認知功能也會進行檢測。

    結果:本研究收錄了211位第二型雙極性疾患,其中95位病人在研究過程中退出。這群病人的平均年紀為31.89±11.44歲,其中54.5%是女性。結果1:在尚未服用藥物前,帶有GNB3 C825T之CC基因型的病人其三酸甘油脂濃度為三組中最高且具有統計差異;在接受治療的期間內,GNB3 C825T基因多型性與身體質量指數、總膽固醇、三酸甘油脂、低密度脂蛋白及瘦素的濃度顯著相關。此外,帶有CT及CC基因型的病人在經過12周的藥物治療後,認知功能有顯著改善。結果2:服藥前,不論C反應蛋白濃度,使用丙戊酸加上安慰劑組及丙戊酸加上美金剛組都沒有任何指標有顯著差異。本研究接著把病人依照未用藥前的C反應蛋白濃度分群,分界點為C反應蛋白濃度等於2322 ng/mL。在C反應蛋白濃度大於分界點的病患之中,身體質量指數、腰圍、總膽固醇、低密度脂蛋白、低密度/高密度脂蛋白比值及C反應蛋白在接受治療的期間內於丙戊酸加上安慰劑組和丙戊酸加上美金剛組之間有顯著差異。然而,這群病人的認知功能,不論是丙戊酸加上安慰劑組或丙戊酸加上美金剛組,在用藥12週後並沒有顯著改善。在C反應蛋白濃度小於等於分界點的病患之中,漢氏憂鬱量表及三酸甘油脂在接受治療的期間內於兩組之間有顯著差異。此外,在這群病人之中,服用丙戊酸加上安慰劑組其認知功能在用藥12週後有獲得顯著改善。結果3:未用藥前的身體質量指數、腰圍、三酸甘油脂、空腹血糖、胰島素、HOMA穩態模型(胰島素抗性及β細胞功能)、瘦素及C反應蛋白濃度於TT+CT基因型與C反應蛋白≤2322 ng/mL組、TT+CT基因型與C反應蛋白>2322 ng/mL組、CC基因型與C反應蛋白≤2322 ng/mL組及CC基因型與C反應蛋白>2322 ng/mL組之間有顯著差異;在接受治療的期間內,胰島素濃度及HOMA穩態模型-胰島素抗性於四組之間有顯著差異。

    結論:根據以上的結果,本研究推論帶有GNB3 C825T之CC基因型的第二型雙極性疾患有較高的風險服用丙戊酸之後產生代謝異常。此外,本研究也推論C反應蛋白濃度可以當作預測雙極性疾患服用丙戊酸之後產生代謝異常的生物指標。至於未來的研究方向,可以試著利用較複雜的統計模型,像是多功能線性回歸模型或是類神經網路對於丙戊酸治療反應的影響。

    Background: Valproate (VPA) is a mood stabilizer for the treatment of bipolar II disorder (BD II) patients, but it may cause metabolic disturbances in certain patients. Genetic and environmental factors may involve in individual difference of metabolic disturbances. Genetic factors include PPAR-γ gene, leptin receptor gene (LEPR), guanosine nucleotide-binding proteins (G protein) associated gene, etc. Guanine nucleotide-binding protein beta 3 (GNB3) gene encodes the β3 subunit of heterotrimeric G proteins, which is the key component of intracellular signal transduction of metabolic regulation. In addition, increased level of C-reactive protein (CRP), a sensitive marker of inflammation, was associated with disease progress of BD, and the association between plasma CRP level and metabolic indices had been found in previous study. Add-on memantine, a kind of anti-inflammation drug, may improve metabolic disturbances in BD patients. However, there were no studies focusing on GNB3 polymorphism and CRP level as predicting factors for VPA treatment outcome among BD II patients.

    Materials and Methods: Patients (aged 18–65 years) who met the DSM-IV and the Chinese Version of SADS-L diagnostic criteria for BD II were enrolled consecutively by trained psychiatrists. In addition, baseline HDRS score of all patients were > 18, which considered as bipolar depression state. All patients were randomized to VPA + placebo or VPA + memantine group. We also collected fasting blood samples between 8–10 am to measure metabolic indices, CRP level and the genotype of GNB3 C825T (rs5443). In addition, body mass index (BMI), waist circumference, disease severity and cognitive function were also measured.

    Results: We recruited 211 bipolar II disorder patients, among of whom 95 patients dropped out during the study period. The mean age of recruited patients was 31.89 ± 11.44 years, and a total of 54.5% of the patients was female. Result 1: At baseline, BD II patients with CC genotype of GNB3 C825T polymorphism had the highest triglyceride (TG) level. During the treatment period, body mass index (BMI), cholesterol, TG, low density lipoprotein (LDL) and leptin level were significantly associated with this polymorphism. In addition, after 12-week treatment, cognitive function in the CT and CC groups were significantly improved. Result 2: At baseline, no significant difference were found between VPA + placebo and VPA + memantine groups no matter the baseline CRP level. We sub-grouped our patients based on baseline level of CRP at 2322 ng/mL. In CRP level >2322 ng/mL group, there were significant differences in BMI, waist circumference, cholesterol, LDL, LDL/HDL ratio and CRP between VPA + placebo and VPA + memantine groups during the treatment period. However, cognitive function was not significantly improved after 12-week treatment in two groups. In CRP level ≤2322 ng/mL group, there were significant differences in HDRS score and TG between two groups during the treatment period. In addition, cognitive function in the VPA + placebo group was significantly improved after 12-week treatment. Result 3: The basal level of BMI, waist circumference, TG, AC glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR), homeostasis model assessment-insulin resistance-β cell function (HOMA-β), leptin and CRP level were significantly different among TT+CT & CRP≤2322 ng/mL group, TT+CT & CRP>2322 ng/mL group, CC & CRP≤2322 ng/mL group and CC & CRP>2322 ng/mL group. During the treatment period, there were significant differences in insulin and HOMA-IR among four groups.

    Conclusions: This study indicated that BD II patients with CC genotype of GNB3 C825T and the baseline level of CRP>2322 ng/mL have worse VPA-induced metabolic disturbances. Both the genotype of GNB3 C825T and the level of CRP could be biomarkers to predict VPA treatment outcome. In the future study, we may use complicated models, such as functional linear model or artificial neural networks to predict VPA treatment outcome.

    Contents 中文摘要.................................................I Abstract..............................................III 誌謝..............................................V Contents..............................................VI Table of contents.....................................XIV Figure of contents...................................XVII Abbreviations...................................XIX Chapter 1 Introduction..................................1 1.1 Bipolar disorder..................................1 1.2 Current pharmacological treatment of bipolar disorder ..................................1 1.2.1 Pharmacological treatment of manic phase..........2 1.2.2 Pharmacological treatment of depressive phase.....2 1.2.3 Pharmacological treatment of maintenance phase....2 1.3 Valproate..................................12 1.3.1 Valproate’s pharmacokinetics and pharmacodynamics ..................................12 1.3.2 The importance of valproate......................12 1.4 Valproate and metabolic disturbances...............18 1.4.1 Valproate may increase the risk of metabolic disturbances...............18 1.4.2 The influence of metabolic disturbances..........18 1.4.3 Mechanisms of valproate-induced metabolic disturbances...............18 1.5 Risk factors of metabolic disturbances.............23 1.6 G protein associated gene background review........23 1.6.1 G protein...............23 1.6.2 Association between G protein and valproate ...............24 1.6.3 Guanine nucleotide-binding protein beta 3 (GNB3) gene...............24 1.7 Inflammatory status and bipolar disorder..........26 1.7.1 Bipolar disorder and inflammation...............26 1.7.2 CRP and cardio-vascular events, metabolic disturbances, psychiatric disease.....................26 1.7.3 Memantine and anti-inflammatory effect..........27 1.8 G protein and inflammation........................29 1.9 Pharmacogenomics..................................29 Chapter 2 Objectives of current study.................30 Chapter 3 Materials and methods.......................31 3.1 Study design...............31 3.2 Subjects and method...............31 3.3 Measurements...............31 3.3.1 Disease severity...............31 3.3.2 Blood...............32 3.3.3 Blood lipid profile...............32 3.3.4 Blood sugar profile...............32 3.3.5 Leptin...............32 3.3.6 CRP...............33 3.3.7 Drug concentration...............33 3.3.8 Adiposity and body fat distribution..............33 3.3.9 Neuropsychological assessment....................33 3.3.10 DNA extraction...............34 3.3.11 SNP determination and genotyping...............35 3.4 Statistics...............35 Chapter 4 Results...............36 4.1 Demographic characteristics and clinical features of all patients at baseline...............36 4.1.1 Disease severity...............36 4.1.2 Metabolic indices...............36 4.1.3 Inflammatory biomarker...............38 4.2 Result 1: Association between GNB3 C825T polymorphism and treatment outcome...............41 4.2.1 Demographic characteristics and clinical features at baseline: VPA + placebo group...............41 4.2.1.1 Disease severity...............41 4.2.1.2 Metabolic indices...............41 4.2.1.3 Inflammatory biomarker...............43 4.2.2 Treatment outcome after 2-week VPA treatment: VPA + placebo group...............43 4.2.2.1 Drug concentration...............43 4.2.2.2 Disease severity...............43 4.2.2.3 Metabolic indices...............43 4.2.2.4 Inflammatory biomarker...............45 4.2.3 Treatment outcome after 8-week VPA treatment: VPA + placebo group...............45 4.2.3.1 Drug concentration...............45 4.2.3.2 Disease severity...............45 4.2.3.3 Metabolic indices...............45 4.2.3.4 Inflammatory biomarker...............47 4.2.4 Treatment outcome after 12-week VPA treatment: VPA + placebo group...............47 4.2.4.1 Drug concentration...............47 4.2.4.2 Disease severity...............47 4.2.4.3 Metabolic indices...............47 4.2.4.4 Inflammatory biomarker...............49 4.2.5 Time, GNB3 and time×GNB3 effect on treatment outcome: VPA + placebo group...............49 4.2.5.1 Drug concentration...............49 4.2.5.2 Disease severity...............49 4.2.5.3 Metabolic indices...............50 4.2.5.4 Inflammatory biomarker...............51 4.2.6 The change in treatment outcome after 2-week VPA treatment: VPA + placebo group...............51 4.2.6.1 Disease severity...............51 4.2.6.2 Metabolic indices...............52 4.2.6.3 Inflammatory biomarker...............53 4.2.7 The change in treatment outcome after 8-week VPA treatment: VPA + placebo group...............53 4.2.7.1 Disease severity...............53 4.2.7.2 Metabolic indices...............53 4.2.7.3 Inflammatory biomarker...............55 4.2.8 The change in treatment outcome after 12-week VPA treatment: VPA + placebo group...............55 4.2.8.1 Disease severity...............55 4.2.8.2 Metabolic indices...............55 4.2.8.3 Inflammatory biomarker after 12-week VPA treatment...............56 4.2.9 Time, GNB3 and Time×GNB3 effect on the change of treatment outcome: VPA + placebo group...............57 4.2.9.1 Disease severity...............57 4.2.9.2 Metabolic indices...............57 4.2.9.3 Inflammatory biomarker...............59 4.2.10 Cognitive function before and after 12-week VPA treatment: VPA + placebo group...............59 4.2.11 Time, GNB3 and Time×GNB3 effect on cognitive function: VPA + placebo group...............60 4.3 Result 2: Association between CRP level and treatment outcome...............85 4.3.1 ROC analysis of CRP cut-off point in VPA + placebo group...............85 4.3.2 Demographic characteristics and clinical features at baseline: VPA + placebo group...............85 4.3.2.1 Disease severity...............85 4.3.2.2 Metabolic indices...............86 4.3.2.3 Inflammatory biomarker...............87 4.3.3 Treatment outcome after 2-week VPA treatment: VPA + placebo group...............87 4.3.3.1 Drug concentration...............87 4.3.3.2 Disease severity...............87 4.3.3.3 Metabolic indices...............88 4.3.3.4 Inflammatory biomarker...............89 4.3.4 Treatment outcome after 8-week VPA treatment: VPA + placebo group...............89 4.3.4.1 Drug concentration...............89 4.3.4.2 Disease severity...............89 4.3.4.3 Metabolic indices...............90 4.3.4.4 Inflammatory biomarker...............91 4.3.5 Treatment outcome after 12-week VPA treatment: VPA + placebo group...............91 4.3.5.1 Drug concentration...............91 4.3.5.2 Disease severity...............91 4.3.5.3 Metabolic indices...............92 4.3.5.4 Inflammatory biomarker...............93 4.3.6 Cognitive function before and after 12-week VPA treatment: VPA + placebo group...............93 4.3.7 Demographic characteristics and clinical features at baseline: VPA + memantine group...............94 4.3.7.1 Disease severity...............95 4.3.7.2 Metabolic indices...............95 4.3.7.3 Inflammatory biomarker...............96 4.3.8 Treatment outcome after 2-week VPA treatment: VPA + memantine group...............97 4.3.8.1 Drug concentration...............97 4.3.8.2 Disease severity...............97 4.3.8.3 Metabolic indices...............97 4.3.8.4 Inflammatory biomarker...............98 4.3.9 Treatment outcome after 8-week VPA treatment: VPA + memantine group...............99 4.3.9.1 Drug concentration...............99 4.3.9.2 Disease severity...............99 4.3.9.3 Metabolic indices...............99 4.3.9.4 Inflammatory biomarker...............100 4.3.10 Treatment outcome after 12-week VPA treatment: VPA + memantine group...............101 4.3.10.1 Drug concentration...............101 4.3.10.2 Disease severity...............101 4.3.10.3 Metabolic indices...............101 4.3.10.4 Inflammatory biomarker...............103 4.3.11 Cognitive function before and after 12-week VPA + memantine treatment: VPA + memantine group............103 4.3.12 Sub-grouped by CRP cut-off point...............104 4.3.13 Demographic characteristics and clinical features at baseline: CRP level >2322 ng/mL group..............105 4.3.13.1 Disease severity...............105 4.3.13.2 Metabolic indices at baseline...............105 4.3.13.3 Inflammatory biomarker...............106 4.3.14 Treatment outcome after 2-week VPA + placebo or VPA + memantine treatment: CRP level >2322 ng/mL group...............107 4.3.14.1 Drug concentration...............107 4.3.14.2 Disease severity...............107 4.3.14.3 Metabolic indices...............107 4.3.14.4 Inflammatory biomarker...............108 4.3.15 Treatment outcome after 8-week VPA + placebo or VPA + memantine treatment: CRP level >2322 ng/mL group...............109 4.3.15.1 Drug concentration...............109 4.3.15.2 Disease severity...............109 4.3.15.3 Metabolic indices...............109 4.3.15.4 Inflammatory biomarker...............110 4.3.16 Treatment outcome after 12-week VPA + placebo or VPA + memantine treatment: CRP level >2322 ng/mL group...............111 4.3.16.1 Drug concentration...............111 4.3.16.2 Disease severity...............111 4.3.16.3 Metabolic indices...............111 4.3.16.4 Inflammatory biomarker...............112 4.3.17 Time, memantine and time×memantine effect on treatment outcome: CRP level >2322 ng/mL group........113 4.3.17.1 Disease severity...............113 4.3.17.2 Metabolic indices...............113 4.3.17.3 Inflammatory biomarker...............115 4.3.18 Cognitive function before and after 12-week VPA + placebo or VPA + memantine treatment: CRP level >2322 ng/mL group...............115 4.3.19 Time, memantine, and time × memantine effect on cognitive function: CRP level >2322 ng/mL group.......116 4.3.20 Demographic characteristics and clinical features at baseline: CRP level ≤2322 ng/mL group..............117 4.3.20.1 Disease severity...............117 4.3.20.2 Metabolic indices...............117 4.3.20.3 Inflammatory biomarker...............118 4.3.21 Treatment outcome after 2-week VPA + placebo or VPA + memantine treatment: CRP level ≤2322 ng/mL group...............119 4.3.21.1 Drug concentration...............119 4.3.21.2 Disease severity...............119 4.3.21.3 Metabolic indices...............119 4.3.21.4 Inflammatory biomarker...............120 4.3.22 Treatment outcome after 8-week VPA + placebo or VPA + memantine treatment: CRP level ≤2322 ng/mL group...............121 4.3.22.1 Drug concentration...............121 4.3.22.2 Disease severity...............121 4.3.22.3 Metabolic indices...............121 4.3.22.4 Inflammatory biomarker...............122 4.3.23 Treatment outcome after 12-week VPA + placebo or VPA + memantine treatment: CRP level ≤2322 ng/mL group...............123 4.3.23.1 Drug concentration...............123 4.3.23.2 Disease severity...............123 4.3.23.3 Metabolic indices...............123 4.3.23.4 Inflammatory biomarker...............124 4.3.24 Time, memantine and time×memantine effect on treatment outcome: CRP level ≤2322 ng/mL group........125 4.3.24.1 Disease severity...............125 4.3.24.2 Metabolic indices...............125 4.3.24.3 Inflammatory biomarker...............127 4.3.25 Cognitive function before and after 12-week VPA + placebo or VPA + memantine treatment: CRP level ≤2322 ng/mL group...............127 4.3.26 Time, memantine, and time × memantine effect on cognitive function: CRP level ≤2322 ng/mL group.......128 4.4 Result 3: Association between GNB3 C825T & CRP level and treatment outcome...............162 4.4.1 Demographic characteristics and clinical features at baseline: VPA + placebo group...............162 4.4.1.1 Disease severity...............162 4.4.1.2 Metabolic indices...............163 4.4.1.3 Inflammatory biomarker...............164 4.4.2 Treatment outcome after 2-week VPA treatment: VPA + placebo group...............164 4.4.2.1 Drug concentration...............164 4.4.2.2 Disease severity...............164 4.4.2.3 Metabolic indices...............165 4.4.2.4 Inflammatory biomarker...............166 4.4.3 Treatment outcome after 8-week VPA treatment: VPA + placebo group...............166 4.4.3.1 Drug concentration...............166 4.4.3.2 Disease severity...............166 4.4.3.3 Metabolic indices...............167 4.4.3.4 Inflammatory biomarker...............168 4.4.4 Treatment outcome after 12-week VPA treatment: VPA + placebo group...............168 4.4.4.1 Drug concentration...............168 4.4.4.2 Disease severity...............168 4.4.4.3 Metabolic indices...............169 4.4.4.4 Inflammatory biomarker...............170 4.4.5 Time and GNB3 C825T & CRP level effect on treatment outcome: VPA + placebo group...............170 4.4.5.1 Drug concentration...............170 4.4.5.2 Disease severity...............170 4.4.5.3 Metabolic indices...............171 4.4.5.4 Inflammatory biomarker...............172 4.4.6 The change in treatment outcome after 2-week VPA treatment: VPA + placebo group...............172 4.4.6.1 Disease severity...............172 4.4.6.2 Metabolic indices...............172 4.4.6.3 Inflammatory biomarker...............173 4.4.7 The change in treatment outcome after 8-week VPA treatment: VPA + placebo group...............174 4.4.7.1 Disease severity...............174 4.4.7.2 Metabolic indices...............174 4.4.7.3 Inflammatory biomarker...............175 4.4.8 The change in treatment outcome after 12-week VPA treatment: VPA + placebo group...............176 4.4.8.1 Disease severity...............176 4.4.8.2 Metabolic indices...............176 4.4.8.3 Inflammatory biomarker...............177 4.4.9 Time and GNB3 C825T & CRP level effect on the change of treatment outcome: VPA + placebo group...............178 4.4.9.1 Disease severity...............178 4.4.9.2 Metabolic indices...............178 4.4.9.3 Inflammatory biomarker...............179 Chapter 5 Discussion...............220 5.1 Discussion 1: GNB3 polymorphism and treatment outcome ...............220 5.1.1 Genotype frequency...............220 5.1.2 Association between disease severity and GNB3 polymorphism...............220 5.1.3 Association between metabolic indices and GNB3 polymorphism...............221 5.1.4 Association between cognitive function and GNB3 polymorphism...............222 5.2 Discussion 2: CRP level and treatment outcome...............224 5.2.1 Why set a CRP cut-off point?...............224 5.2.2 CRP level as a biomarker for improvement of disease severity...............224 5.2.3 Memantine may reduce metabolic disturbances.....225 5.2.4 The effect of memantine on cognitive function...226 5.3 Discussion 3: Integration effect of GNB3 and CRP level on treatment outcome...............227 5.3.1 Integration effect of GNB3 and CRP level on disease severity...............227 5.3.2 Integration effect of GNB3 and CRP level on metabolic indices...............228 5.3.3 Methods for investigate the integration effect of gene and environmental factors...............229 5.4 Clinical implications-- focus on metabolic disturbances.................231 5.4.1 Validation two predictive factors on metabolic disturbances and apply to clinical...............231 5.4.2 Strategies against VPA-induced metabolic disturbances in BD II patients...............232 5.5 Limitations...............233 Chapter 6 Conclusion...............234 Chapter 7 Reference...............236 Chapter 8 Appendix...............250 Table of contents Table 1. Diagnostic criteria for mania...............3 Table 2. Diagnostic criteria for hypomania.............4 Table 3. Diagnostic criteria for major depression......5 Table 4. Recommendations for pharmacological treatment of acute mania...............7 Table 5. Recommendations for pharmacological treatment of bipolar depression...............8 Table 6. Recommendations for maintenance pharmacotherapy of bipolar disorder...............9 Table 7. Psychotropic Medications Taken by Subjects who were in Recovered Status at Baseline or who Reached Recovered Status during Follow-up, by Age..............14 Table 8. First-line treatment of drugs in different phase of bipolar disorder...............15 Table 9. Weight gain in valproate-treated patients.....20 Table 10. Metabolic index in bipolar patients who received VPA treatment...............21 Table 11. Definition of metabolic disturbances.........22 Table 12. Cross-sectional associations between inflammation and psychopathology at baseline...........28 Table 13. Overview of major clinical studies of hs-CRP in ACS...............28 Table 14. Demographic characteristics and measurements of bipolar II patients-- VPA + placebo and VPA + memantine groups...............40 Table 15. Demographic characteristics and clinical features at baseline-- GNB3 genotype...............61 Table 16. Treatment outcome after 2-week VPA treatment-- GNB3 genotype...............62 Table 17. Treatment outcome after 8-week VPA treatment-- GNB3 genotype...............63 Table 18. Treatment outcome after 12-week VPA treatment-- GNB3 genotype...............64 Table 19. The change of treatment outcome after 2-week VPA treatment-- GNB3 genotype...............65 Table 20. The change of treatment outcome after 8-week VPA treatment-- GNB3 genotype...............66 Table 21. The change of treatment outcome after 12-week VPA treatment-- GNB3 genotype...............67 Table 22. Performance of the neuropsychological functional test before and after 12-week VPA treatment-- GNB3 genotype...............68 Table 23. Demographic characteristics and clinical features at baseline-- CRP cut-off point, VPA + placebo group...............130 Table 24. Treatment outcome after 2-week VPA treatment-- CRP cut-off point...............131 Table 25. Treatment outcome after 8-week VPA treatment-- CRP cut-off point...............132 Table 26. Treatment outcome after 12-week VPA treatment-- CRP cut-off point...............133 Table 27. Performance of the neuropsychological functional test before and after 12-week VPA treatment-- CRP cut-off point...............134 Table 28. Demographic characteristics and clinical features at baseline-- CRP cut-off point, VPA + memantine group...............135 Table 29. Treatment outcome after 2-week VPA + memantine treatment-- CRP cut-off point...............136 Table 30. Treatment outcome after 8-week VPA + memantine treatment-- CRP cut-off point...............137 Table 31. Treatment outcome after 12-week VPA + memantine treatment-- CRP cut-off point...............138 Table 32. Performance of the neuropsychological functional test before and after 12-week VPA + memantine treatment-- CRP cut-off point...............139 Table 33. Demographic characteristics and clinical features at baseline-- CRP level >2322 ng/mL group....140 Table 34. Treatment outcome after 2-week VPA + placebo or VPA + memantine treatment-- CRP level >2322 ng/mL group...............141 Table 35. Treatment outcome after 8-week VPA + placebo or VPA + memantine treatment-- CRP level >2322 ng/mL group ...............142 Table 36. Treatment outcome after 12-week VPA + placebo or VPA + memantine treatment-- CRP level >2322 ng/mL group...............143 Table 37. Performance of the neuropsychological functional test before and after 12-week VPA + placebo or VPA + memantine treatment-- CRP level >2322 ng/mL group ...............144 Table 38. Demographic characteristics and clinical features at baseline-- CRP level ≤2322 ng/mL group ...............145 Table 39. Treatment outcome after 2-week VPA + placebo or VPA + memantine treatment-- CRP level ≤2322 ng/mL group ...............146 Table 40. Treatment outcome after 8-week VPA + placebo or VPA + memantine treatment-- CRP level ≤2322 ng/mL group ...............147 Table 41. Treatment outcome after 12-week VPA + placebo or VPA + memantine treatment-- CRP level ≤2322 ng/mL group...............148 Table 42. Performance of the neuropsychological functional test before and after 12-week VPA + placebo or VPA + memantine treatment-- CRP level ≤2322 ng/mL group ...............149 Table 43. Demographic characteristics and clinical features at baseline-- GNB3 genotype & CRP level ...............180 Table 44. Treatment outcome after 2-week VPA treatment-- GNB3 genotype & CRP level...............181 Table 45. Treatment outcome after 8-week VPA treatment-- GNB3 genotype & CRP level...............182 Table 46. Treatment outcome after 12-week VPA treatment-- GNB3 genotype & CRP level...............183 Table 47. The change of treatment outcome after 2-week VPA treatment-- GNB3 genotype & CRP level.............184 Table 48. The change of treatment outcome after 8-week VPA treatment-- GNB3 genotype & CRP level.............185 Table 49. The change of treatment outcome after 12-week VPA treatment-- GNB3 genotype & CRP level.............186 Table 50. GNB3 genotype frequencies for BD II patients and healthy control.............223 Table 51. Gene (GNB3) x environment (CRP) effect on treatment outcome after 12-week VPA treatment.........230 Figure of contents Figure 1. Treatment algorithm for acute mania..........10 Figure 2. Treatment algorithm for bipolar depression...11 Figure 3. Metabolic pathway of valproate.............16 Figure 4. Mechanisms of valproate.............17 Figure 5. Polymorphisms in GNB3 gene.............25 Figure 6. Gβ protein content as measured by Western blot in GNB3 gene of fat cell.............25 Figure 7. Flow chart of bipolar II patients............39 Figure 8. As time progress, time, GNB3 genotype, and time×GNB3 genotype effect on valproate level...........69 Figure 9. As time progress, time, GNB3 genotype, and time×GNB3 genotype effect on disease severity..........70 Figure 10. As time progress, time, GNB3 genotype, and time×GNB3 genotype effect on BMI and waist circumference .............71 Figure 11. As time progress, time, GNB3 genotype, and time×GNB3 genotype effect on lipid profile.............72 Figure 12. As time progress, time, GNB3 genotype, and time×GNB3 genotype effect on sugar profile.............74 Figure 13. As time progress, time, GNB3 genotype, and time×GNB3 genotype effect on leptin and CRP............76 Figure 14. As time progress, time, GNB3 genotype, and time×GNB3 genotype effect on the change of disease severity.............77 Figure 15. As time progress, time, GNB3 genotype, and time×GNB3 genotype effect on the change of BMI and waist circumference.............78 Figure 16. As time progress, time, GNB3 genotype, and time×GNB3 genotype effect on the change of lipid profile .............79 Figure 17. As time progress, time, GNB3 genotype, and time×GNB3 genotype effect on the change of sugar profile .............81 Figure 18. As time progress, time, GNB3 genotype, and time×GNB3 genotype effect on the change of leptin and CRP .............83 Figure 19. As time progress, time, GNB3 genotype, and time ×GNB3 on cognitive function.............84 Figure 20. ROC curve for CRP cut-off point............129 Figure 21. As time progress, time, memantine, and time × memantine effect on disease severity, CRP cut-off point .............150 Figure 22. As time progress, time, memantine, and time × memantine effect on BMI and waist circumference, CRP cut-off point.............152 Figure 23. As time progress, time, memantine, and time × memantine effect on lipid profile, CRP cut-off point..153 Figure 24. As time progress, time, memantine, and time × memantine effect on sugar profile, CRP cut-off point .............156 Figure 25. As time progress, time, memantine, and time × memantine effect on leptin and CRP, CRP cut-off point...........159 Figure 26. As time progress, time, memantine, and time × memantine on cognitive function, CRP cut-off point....160 Figure 27. As time progress, time, GNB3 genotype & CRP cut-off point effect on VPA level.............187 Figure 28. As time progress, time, GNB3 genotype & CRP cut-off point effect on disease severity.............188 Figure 29. As time progress, time, GNB3 genotype & CRP cut-off point effect on BMI and waist circumference .............190 Figure 30. As time progress, time, GNB3 genotype & CRP cut-off point effect on lipid profile.............192 Figure 31. As time progress, time, GNB3 genotype & CRP cut-off point effect on sugar profile.............197 Figure 32. As time progress, time, GNB3 genotype & CRP cut-off point effect on leptin and CRP.............202 Figure 33. As time progress, time, GNB3 genotype & CRP cut-off point effect on the change of disease severity .............204 Figure 34. As time progress, time, GNB3 genotype & CRP cut-off point effect on the change of BMI and waist circumference.............206 Figure 35. As time progress, time, GNB3 genotype & CRP cut-off point effect on the change of lipid profile .............208 Figure 36. As time progress, time, GNB3 genotype & CRP cut-off point effect on the change of sugar profile .............213 Figure 37. As time progress, time, GNB3 genotype & CRP cut-off point effect on the change of leptin and CRP .............218 Figure 38 Summary of the current study.............235

    Reference
    [1] R. B. Lu, S. L. Chen, S. Y. Lee, Y. H. Chang, S. H. Chen, C. H. Chu, et al., "Neuroprotective and neurogenesis agent for treating bipolar II disorder: add-on memantine to mood stabilizer works," Med Hypotheses, vol. 79, pp. 280-3, Aug 2012.
    [2] L. N. Yatham, S. H. Kennedy, S. V. Parikh, A. Schaffer, S. Beaulieu, M. Alda, et al., "Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013," Bipolar Disord, vol. 15, pp. 1-44, Feb 2013.
    [3] H. S. Akiskal and O. Pinto, "The evolving bipolar spectrum. Prototypes I, II, III, and IV," Psychiatr Clin North Am, vol. 22, pp. 517-34, vii, Sep 1999.
    [4] M. Berk and S. Dodd, "Bipolar II disorder: a review," Bipolar Disord, vol. 7, pp. 11-21, Feb 2005.
    [5] S. Y. Lee, S. L. Chen, Y. H. Chang, P. S. Chen, S. Y. Huang, N. S. Tzeng, et al., "Add-on memantine to valproate treatment increased HDL-C in bipolar II disorder," J Psychiatr Res, vol. 47, pp. 1343-8, Oct 2013.
    [6] M. Bauer, T. Glenn, M. Alda, O. A. Andreassen, R. Ardau, F. Bellivier, et al., "Impact of sunlight on the age of onset of bipolar disorder," Bipolar Disord, vol. 14, pp. 654-63, Sep 2012.
    [7] "American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition," American Psychiatric Association, 2013.
    [8] D. M. Novick, H. A. Swartz, and E. Frank, "Suicide attempts in bipolar I and bipolar II disorder: a review and meta-analysis of the evidence," Bipolar Disord, vol. 12, pp. 1-9, Feb 2010.
    [9] "Practice guideline for the treatment of patients with bipolar disorder (revision)," Am J Psychiatry, vol. 159, pp. 1-50, Apr 2002.
    [10] E. Vieta, J. Locklear, O. Gunther, M. Ekman, C. Miltenburger, M. L. Chatterton, et al., "Treatment options for bipolar depression: a systematic review of randomized, controlled trials," J Clin Psychopharmacol, vol. 30, pp. 579-90, Oct 2010.
    [11] S. Chateauvieux, F. Morceau, M. Dicato, and M. Diederich, "Molecular and therapeutic potential and toxicity of valproic acid," J Biomed Biotechnol, vol. 2010, 2010.
    [12] Y. Ghodke-Puranik, C. F. Thorn, J. K. Lamba, J. S. Leeder, W. Song, A. K. Birnbaum, et al., "Valproic acid pathway: pharmacokinetics and pharmacodynamics," Pharmacogenet Genomics, vol. 23, pp. 236-41, Apr 2013.
    [13] J. S. Martini, P. Raake, L. E. Vinge, B. R. DeGeorge, Jr., J. K. Chuprun, D. M. Harris, et al., "Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes," Proc Natl Acad Sci U S A, vol. 105, pp. 12457-62, Aug 26 2008.
    [14] J. Hunsberger, D. R. Austin, I. D. Henter, and G. Chen, "The neurotrophic and neuroprotective effects of psychotropic agents," Dialogues Clin Neurosci, vol. 11, pp. 333-48, 2009.
    [15] J. M. Zajecka, R. Weisler, G. Sachs, A. C. Swann, P. Wozniak, and K. W. Sommerville, "A comparison of the efficacy, safety, and tolerability of divalproex sodium and olanzapine in the treatment of bipolar disorder," J Clin Psychiatry, vol. 63, pp. 1148-55, Dec 2002.
    [16] R. K. Al Jurdi, L. B. Marangell, N. J. Petersen, M. Martinez, L. Gyulai, and M. Sajatovic, "Prescription patterns of psychotropic medications in elderly compared with younger participants who achieved a "recovered" status in the systematic treatment enhancement program for bipolar disorder," Am J Geriatr Psychiatry, vol. 16, pp. 922-33, Nov 2008.
    [17] F. M. Werner and R. Covenas, "Safety of antipsychotic drugs: focus on therapeutic and adverse effects," Expert Opin Drug Saf, vol. 13, pp. 1031-42, Aug 2014.
    [18] A. Verrotti, C. D'Egidio, A. Mohn, G. Coppola, and F. Chiarelli, "Weight gain following treatment with valproic acid: pathogenetic mechanisms and clinical implications," Obes Rev, vol. 12, pp. e32-43, May 2011.
    [19] H. H. Chang, Y. K. Yang, P. W. Gean, H. C. Huang, P. S. Chen, and R. B. Lu, "The role of valproate in metabolic disturbances in bipolar disorder patients," J Affect Disord, vol. 124, pp. 319-23, Aug 2010.
    [20] H. H. Chang, C. H. Chou, P. S. Chen, P. W. Gean, H. C. Huang, C. Y. Lin, et al., "High prevalence of metabolic disturbances in patients with bipolar disorder in Taiwan," J Affect Disord, vol. 117, pp. 124-9, Sep 2009.
    [21] C. Furtado de Souza, M. B. Dalzochio, F. J. de Oliveira, J. L. Gross, and C. B. Leitao, "Glucose tolerance status is a better predictor of diabetes and cardiovascular outcomes than metabolic syndrome: a prospective cohort study," Diabetol Metab Syndr, vol. 4, p. 25, 2012.
    [22] "Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III)," National Cholesterol Education Program, 2004.
    [23] L. Qiao, J. Schaack, and J. Shao, "Suppression of adiponectin gene expression by histone deacetylase inhibitor valproic acid," Endocrinology, vol. 147, pp. 865-74, Feb 2006.
    [24] R. Greco, G. Latini, F. Chiarelli, P. Iannetti, and A. Verrotti, "Leptin, ghrelin, and adiponectin in epileptic patients treated with valproic acid," Neurology, vol. 65, pp. 1808-9, Dec 13 2005.
    [25] V. Belcastro, C. D'Egidio, P. Striano, and A. Verrotti, "Metabolic and endocrine effects of valproic acid chronic treatment," Epilepsy Res, vol. 107, pp. 1-8, Nov 2013.
    [26] J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky, "Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?," Diabetes, vol. 52, pp. 1-8, Jan 2003.
    [27] R. Brown, S. A. Imran, E. Ur, and M. Wilkinson, "Valproic acid and CEBPalpha-mediated regulation of adipokine gene expression in hypothalamic neurons and 3T3-L1 adipocytes," Neuroendocrinology, vol. 88, pp. 25-34, 2008.
    [28] R. H. Mallappa, N. Rokana, R. K. Duary, H. Panwar, V. K. Batish, and S. Grover, "Management of metabolic syndrome through probiotic and prebiotic interventions," Indian J Endocrinol Metab, vol. 16, pp. 20-7, Jan 2012.
    [29] X. Zhao, K. Xu, H. Shi, J. Cheng, J. Ma, Y. Gao, et al., "Application of the back-error propagation artificial neural network (BPANN) on genetic variants in the PPAR-gamma and RXR-alpha gene and risk of metabolic syndrome in a Chinese Han population," J Biomed Res, vol. 28, pp. 114-22, Mar 2014.
    [30] S. N. Roffeei, Z. Mohamed, G. P. Reynolds, M. A. Said, A. Hatim, E. H. Mohamed, et al., "Association of FTO, LEPR and MTHFR gene polymorphisms with metabolic syndrome in schizophrenia patients receiving antipsychotics," Pharmacogenomics, vol. 15, pp. 477-85, Mar 2014.
    [31] S. Klenke, M. Kussmann, and W. Siffert, "The GNB3 C825T polymorphism as a pharmacogenetic marker in the treatment of hypertension, obesity, and depression," Pharmacogenet Genomics, vol. 21, pp. 594-606, Sep 2011.
    [32] W. Siffert, D. Rosskopf, G. Siffert, S. Busch, A. Moritz, R. Erbel, et al., "Association of a human G-protein beta3 subunit variant with hypertension," Nat Genet, vol. 18, pp. 45-8, Jan 1998.
    [33] R. A. Hegele, C. Anderson, T. K. Young, and P. W. Connelly, "G-protein beta3 subunit gene splice variant and body fat distribution in Nunavut Inuit," Genome Res, vol. 9, pp. 972-7, Oct 1999.
    [34] G. Chen, H. K. Manji, C. B. Wright, D. B. Hawver, and W. Z. Potter, "Effects of valproic acid on beta-adrenergic receptors, G-proteins, and adenylyl cyclase in rat C6 glioma cells," Neuropsychopharmacology, vol. 15, pp. 271-80, Sep 1996.
    [35] L. A. Catapano and H. K. Manji, "G protein-coupled receptors in major psychiatric disorders," Biochim Biophys Acta, vol. 1768, pp. 976-93, Apr 2007.
    [36] A. L. Stoll and W. E. Severus, "Mood stabilizers: shared mechanisms of action at postsynaptic signal-transduction and kindling processes," Harv Rev Psychiatry, vol. 4, pp. 77-89, Jul-Aug 1996.
    [37] C. G. Hahn, Umapathy, H. Y. Wang, R. Koneru, D. F. Levinson, and E. Friedman, "Lithium and valproic acid treatments reduce PKC activation and receptor-G protein coupling in platelets of bipolar manic patients," J Psychiatr Res, vol. 39, pp. 355-63, Jul 2005.
    [38] K. D. Bromberg, R. Iyengar, and J. C. He, "Regulation of neurite outgrowth by G(i/o) signaling pathways," Front Biosci, vol. 13, pp. 4544-57, 2008.
    [39] W. Siffert, "G protein beta 3 subunit 825T allele, hypertension, obesity, and diabetic nephropathy," Nephrol Dial Transplant, vol. 15, pp. 1298-306, Sep 2000.
    [40] D. Rosskopf, I. Manthey, and W. Siffert, "Identification and ethnic distribution of major haplotypes in the gene GNB3 encoding the G-protein beta3 subunit," Pharmacogenetics, vol. 12, pp. 209-20, Apr 2002.
    [41] M. Ryden, G. Faulds, J. Hoffstedt, A. Wennlund, and P. Arner, "Effect of the (C825T) Gbeta(3) polymorphism on adrenoceptor-mediated lipolysis in human fat cells," Diabetes, vol. 51, pp. 1601-8, May 2002.
    [42] T. Hayakawa, T. Takamura, T. Abe, and S. Kaneko, "Association of the C825T polymorphism of the G-protein beta3 subunit gene with hypertension, obesity, hyperlipidemia, insulin resistance, diabetes, diabetic complications, and diabetic therapies among Japanese," Metabolism, vol. 56, pp. 44-8, Jan 2007.
    [43] D. Kopf, L. S. Cheng, P. Blandau, W. Hsueh, L. J. Raffel, T. A. Buchanan, et al., "Association of insulin sensitivity and glucose tolerance with the c.825C>T variant of the G protein beta-3 subunit gene," J Diabetes Complications, vol. 22, pp. 205-9, May-Jun 2008.
    [44] M. J. Wilkie, D. Smith, I. C. Reid, R. K. Day, K. Matthews, C. R. Wolf, et al., "A splice site polymorphism in the G-protein beta subunit influences antidepressant efficacy in depression," Pharmacogenet Genomics, vol. 17, pp. 207-15, Mar 2007.
    [45] L. Stertz, P. V. Magalhaes, and F. Kapczinski, "Is bipolar disorder an inflammatory condition? The relevance of microglial activation," Curr Opin Psychiatry, vol. 26, pp. 19-26, Jan 2013.
    [46] A. A. Dargel, O. Godin, F. Kapczinski, D. J. Kupfer, and M. Leboyer, "C-reactive protein alterations in bipolar disorder: a meta-analysis," J Clin Psychiatry, vol. 76, pp. 142-50, Feb 2015.
    [47] B. G. Nordestgaard and J. Zacho, "Lipids, atherosclerosis and CVD risk: is CRP an innocent bystander?," Nutr Metab Cardiovasc Dis, vol. 19, pp. 521-4, Oct 2009.
    [48] T. A. Pearson, G. A. Mensah, R. W. Alexander, J. L. Anderson, R. O. Cannon, 3rd, M. Criqui, et al., "Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association," Circulation, vol. 107, pp. 499-511, Jan 28 2003.
    [49] W. Wei, S. Yang, Y. Qiu, H. Wang, X. Zhao, Y. Zhao, et al., "CRP gene polymorphism contributes genetic susceptibility to dyslipidemia in Han Chinese population," Mol Biol Rep, vol. 41, pp. 2335-43, 2014.
    [50] C. K. Wu, C. Y. Yang, J. W. Lin, H. J. Hsieh, F. C. Chiu, J. J. Chen, et al., "The relationship among central obesity, systemic inflammation, and left ventricular diastolic dysfunction as determined by structural equation modeling," Obesity (Silver Spring), vol. 20, pp. 730-7, Apr 2012.
    [51] G. A. Bray, M. B. Clearfield, D. J. Fintel, and D. S. Nelinson, "Overweight and obesity: the pathogenesis of cardiometabolic risk," Clin Cornerstone, vol. 9, pp. 30-40; discussion 41-2, 2009.
    [52] S. L. Doyle, C. L. Donohoe, J. Lysaght, and J. V. Reynolds, "Visceral obesity, metabolic syndrome, insulin resistance and cancer," Proc Nutr Soc, vol. 71, pp. 181-9, Feb 2012.
    [53] M. K. Wium-Andersen, D. D. Orsted, S. F. Nielsen, and B. G. Nordestgaard, "Elevated C-reactive protein levels, psychological distress, and depression in 73, 131 individuals," JAMA Psychiatry, vol. 70, pp. 176-84, Feb 2013.
    [54] K. Becking, L. Boschloo, N. Vogelzangs, B. C. Haarman, R. Riemersma-van der Lek, B. W. Penninx, et al., "The association between immune activation and manic symptoms in patients with a depressive disorder," Transl Psychiatry, vol. 3, p. e314, 2013.
    [55] F. Dickerson, C. Stallings, A. Origoni, J. Boronow, and R. Yolken, "Elevated serum levels of C-reactive protein are associated with mania symptoms in outpatients with bipolar disorder," Prog Neuropsychopharmacol Biol Psychiatry, vol. 31, pp. 952-5, May 9 2007.
    [56] H. M. Wu, N. S. Tzeng, L. Qian, S. J. Wei, X. Hu, S. H. Chen, et al., "Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation," Neuropsychopharmacology, vol. 34, pp. 2344-57, Sep 2009.
    [57] S. Y. Lee, S. L. Chen, Y. H. Chang, P. S. Chen, S. Y. Huang, N. S. Tzeng, et al., "Inflammation's Association with Metabolic Profiles before and after a Twelve-Week Clinical Trial in Drug-Naive Patients with Bipolar II Disorder," PLoS One, vol. 8, p. e66847, 2013.
    [58] S. Y. Lee, S. L. Chen, Y. H. Chang, P. S. Chen, S. Y. Huang, N. S. Tzeng, et al., "The effects of add-on low-dose memantine on cytokine levels in bipolar II depression: a 12-week double-blind, randomized controlled trial," J Clin Psychopharmacol, vol. 34, pp. 337-43, Jun 2014.
    [59] G. Fond, N. Hamdani, F. Kapczinski, W. Boukouaci, N. Drancourt, A. Dargel, et al., "Effectiveness and tolerance of anti-inflammatory drugs' add-on therapy in major mental disorders: a systematic qualitative review," Acta Psychiatr Scand, vol. 129, pp. 163-79, Mar 2014.
    [60] W. Koenig, "High-sensitivity C-reactive protein and atherosclerotic disease: from improved risk prediction to risk-guided therapy," Int J Cardiol, vol. 168, pp. 5126-34, Oct 15 2013.
    [61] K. M. Druey, "Regulators of G protein signalling: potential targets for treatment of allergic inflammatory diseases such as asthma," Expert Opin Ther Targets, vol. 7, pp. 475-84, Aug 2003.
    [62] E. N. Johnson and K. M. Druey, "Heterotrimeric G protein signaling: role in asthma and allergic inflammation," J Allergy Clin Immunol, vol. 109, pp. 592-602, Apr 2002.
    [63] T. J. Rogers and P. K. Peterson, "Opioid G protein-coupled receptors: signals at the crossroads of inflammation," Trends Immunol, vol. 24, pp. 116-21, Mar 2003.
    [64] D. A. a. B. Katz, A., " Overview of pharmacogenetics.," Curr Protoc Hum Genet vol. Chapter 9, Unit 9 19, 2009.
    [65] L. Wang, H. L. McLeod, and R. M. Weinshilboum, "Genomics and drug response," N Engl J Med, vol. 364, pp. 1144-53, Mar 24 2011.
    [66] C. Li, "Personalized medicine - the promised land: are we there yet?," Clin Genet, vol. 79, pp. 403-12, May 2011.
    [67] H. M., " A rating scale for depression.," J Neurol Neurosurg Psychiatry, vol. 23, pp. 56–62, 1960.
    [68] B. J. Young RC, Ziegler VE, Meyer DA, "A rating scale for mania: reliability, validity and sensitivity," Br J Psychiatry, vol. 133, pp. 429–35, 1978.
    [69] D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, "Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man," Diabetologia, vol. 28, pp. 412-9, Jul 1985.
    [70] P. Stratta, F. Mancini, P. Mattei, E. Daneluzzo, M. Casacchia, and A. Rossi, "Association between striatal reduction and poor Wisconsin card sorting test performance in patients with schizophrenia," Biol Psychiatry, vol. 42, pp. 816-20, Nov 1 1997.
    [71] H. G. Smid, M. R. de Witte, I. Homminga, and R. J. van den Bosch, "Sustained and transient attention in the continuous performance task," J Clin Exp Neuropsychol, vol. 28, pp. 859-83, Aug 2006.
    [72] T. J. Hsiao, Y. Hwang, C. H. Liu, H. M. Chang, and E. Lin, "Association of the C825T polymorphism in the GNB3 gene with obesity and metabolic phenotypes in a Taiwanese population," Genes Nutr, vol. 8, pp. 137-44, Jan 2013.
    [73] D. L. Streiner, "Statistics commentary series: commentary #3--last observation carried forward," J Clin Psychopharmacol, vol. 34, pp. 423-5, Aug 2014.
    [74] H. H. Chang, P. W. Gean, C. H. Chou, Y. K. Yang, H. C. Tsai, R. B. Lu, et al., "C825T polymorphism of the GNB3 gene on valproate-related metabolic abnormalities in bipolar disorder patients," J Clin Psychopharmacol, vol. 30, pp. 512-7, Oct 2010.
    [75] C. J. Hong, T. J. Chen, Y. W. Yu, and S. J. Tsai, "Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder," Pharmacogenomics J, vol. 6, pp. 27-33, Jan-Feb 2006.
    [76] H. J. Lee, J. H. Cha, B. J. Ham, C. S. Han, Y. K. Kim, S. H. Lee, et al., "Association between a G-protein beta 3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders," Pharmacogenomics J, vol. 4, pp. 29-33, 2004.
    [77] Q. Hu, S. Y. Zhang, F. Liu, X. J. Zhang, G. C. Cui, E. Q. Yu, et al., "Influence of GNB3 C825T polymorphism on the efficacy of antidepressants in the treatment of major depressive disorder: A meta-analysis," J Affect Disord, vol. 172C, pp. 103-109, Oct 2 2014.
    [78] M. Willeit, N. Praschak-Rieder, P. Zill, A. Neumeister, M. Ackenheil, S. Kasper, et al., "C825T polymorphism in the G protein beta3-subunit gene is associated with seasonal affective disorder," Biol Psychiatry, vol. 54, pp. 682-6, Oct 1 2003.
    [79] P. R. Joyce, R. T. Mulder, S. E. Luty, J. M. McKenzie, A. L. Miller, G. R. Rogers, et al., "Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein beta3 subunit as predictors of response to fluoxetine and nortriptyline," Int J Neuropsychopharmacol, vol. 6, pp. 339-46, Dec 2003.
    [80] R. S. Duman, "Novel therapeutic approaches beyond the serotonin receptor," Biol Psychiatry, vol. 44, pp. 324-35, Sep 1 1998.
    [81] R. H. Kang, S. W. Hahn, M. J. Choi, and M. S. Lee, "Relationship between G-protein beta-3 subunit C825T polymorphism and mirtazapine responses in Korean patients with major depression," Neuropsychobiology, vol. 56, pp. 1-5, 2007.
    [82] E. Brand, J. G. Wang, S. M. Herrmann, and J. A. Staessen, "An epidemiological study of blood pressure and metabolic phenotypes in relation to the Gbeta3 C825T polymorphism," J Hypertens, vol. 21, pp. 729-37, Apr 2003.
    [83] Y. Dong, H. Zhu, G. A. Sagnella, N. D. Carter, D. G. Cook, and F. P. Cappuccio, "Association between the C825T polymorphism of the G protein beta3-subunit gene and hypertension in blacks," Hypertension, vol. 34, pp. 1193-6, Dec 1999.
    [84] B. Saller, P. Nemesszeghy, K. Mann, W. Siffert, and D. Rosskopf, "Glucose and lipid metabolism in young lean normotensive males with the G protein beta3 825T-allele," Eur J Med Res, vol. 8, pp. 91-7, Mar 27 2003.
    [85] J. G. Kiani, M. Saeed, S. H. Parvez, and P. M. Frossard, "Association of G-protein beta-3 subunit gene (GNB3) T825 allele with Type II diabetes," Neuro Endocrinol Lett, vol. 26, pp. 87-8, Apr 2005.
    [86] M. Daimon, H. Sato, S. Sasaki, S. Toriyama, M. Emi, M. Muramatsu, et al., "Salt consumption-dependent association of the GNB3 gene polymorphism with type 2 DM," Biochem Biophys Res Commun, vol. 374, pp. 576-80, Sep 26 2008.
    [87] X. Wang, H. Bai, P. Fan, R. Liu, Y. Liu, and B. Liu, "[Analysis of the GNB3 gene 825C/T polymorphism in non-obese and obese Chinese]," Zhonghua Yi Xue Yi Chuan Xue Za Zhi, vol. 25, pp. 670-4, Dec 2008.
    [88] Y. C. Lee, H. H. Lin, C. J. Wang, C. C. Liu, W. J. Wu, C. H. Huang, et al., "The associations among GNB3 C825T polymorphism, erectile dysfunction, and related risk factors," J Sex Med, vol. 5, pp. 2061-8, Sep 2008.
    [89] Y. C. Wang, Y. M. Bai, J. Y. Chen, C. C. Lin, I. C. Lai, and Y. J. Liou, "C825T polymorphism in the human G protein beta3 subunit gene is associated with long-term clozapine treatment-induced body weight change in the Chinese population," Pharmacogenet Genomics, vol. 15, pp. 743-8, Oct 2005.
    [90] O. Bozkurt, A. de Boer, D. E. Grobbee, P. W. de Leeuw, A. A. Kroon, P. Schiffers, et al., "Variation in Renin-Angiotensin system and salt-sensitivity genes and the risk of diabetes mellitus associated with the use of thiazide diuretics," Am J Hypertens, vol. 22, pp. 545-51, May 2009.
    [91] R. L. Pollex, A. J. Hanley, B. Zinman, S. B. Harris, H. M. Khan, and R. A. Hegele, "Metabolic syndrome in aboriginal Canadians: prevalence and genetic associations," Atherosclerosis, vol. 184, pp. 121-9, Jan 2006.
    [92] E. Brand, S. M. Herrmann, V. Nicaud, J. B. Ruidavets, A. Evans, D. Arveiler, et al., "The 825C/T polymorphism of the G-protein subunit beta3 is not related to hypertension," Hypertension, vol. 33, pp. 1175-8, May 1999.
    [93] G. Andersen, J. Overgaard, A. Albrechtsen, C. Glumer, K. Borch-Johnsen, T. Jorgensen, et al., "Studies of the association of the GNB3 825C>T polymorphism with components of the metabolic syndrome in white Danes," Diabetologia, vol. 49, pp. 75-82, Jan 2006.
    [94] G. Chen, K. A. Hasanat, J. M. Bebchuk, G. J. Moore, D. Glitz, and H. K. Manji, "Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants," Psychosom Med, vol. 61, pp. 599-617, Sep-Oct 1999.
    [95] C. J. Phiel, F. Zhang, E. Y. Huang, M. G. Guenther, M. A. Lazar, and P. S. Klein, "Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen," J Biol Chem, vol. 276, pp. 36734-41, Sep 28 2001.
    [96] J. M. Beaulieu and M. G. Caron, "Beta-arrestin goes nuclear," Cell, vol. 123, pp. 755-7, Dec 2 2005.
    [97] J. Stockli and D. E. James, "Insulin action under arrestin," Cell Metab, vol. 9, pp. 213-4, Mar 2009.
    [98] J. Karpac and H. Jasper, "Metabolic homeostasis: HDACs take center stage," Cell, vol. 145, pp. 497-9, May 13 2011.
    [99] D. P. Christensen, M. Dahllof, M. Lundh, D. N. Rasmussen, M. D. Nielsen, N. Billestrup, et al., "Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus," Mol Med, vol. 17, pp. 378-90, May-Jun 2011.
    [100] C. U. Johannessen, "Mechanisms of action of valproate: a commentatory," Neurochem Int, vol. 37, pp. 103-10, Aug-Sep 2000.
    [101] K. Ashrafi, "Obesity and the regulation of fat metabolism," WormBook, pp. 1551-1565, March 9 2007.
    [102] R. C. Pillutla, J. Ahnn, and M. Inouye, "Deletion of the putative effector region of Era, an essential GTP-binding protein in Escherichia coli, causes a dominant-negative phenotype," FEMS Microbiol Lett, vol. 143, pp. 47-55, Sep 15 1996.
    [103] E. Casiglia, N. Giordano, V. Tikhonoff, G. Boschetti, A. Mazza, S. Caffi, et al., "Cognitive Functions across the GNB3 C825T Polymorphism in an Elderly Italian Population," Neurol Res Int, vol. 2013, p. 597034, 2013.
    [104] P. L. Yau, E. H. Kang, D. C. Javier, and A. Convit, "Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity," Obesity (Silver Spring), vol. 22, pp. 1865-71, Aug 2014.
    [105] R. K. West, R. Ravona-Springer, J. Schmeidler, D. Leroith, K. Koifman, E. Guerrero-Berroa, et al., "The association of duration of type 2 diabetes with cognitive performance is modulated by long-term glycemic control," Am J Geriatr Psychiatry, vol. 22, pp. 1055-9, Oct 2014.
    [106] I. J. Osuji and C. M. Cullum, "Cognition in bipolar disorder," Psychiatr Clin North Am, vol. 28, pp. 427-41, Jun 2005.
    [107] Y. M. Bai, T. P. Su, S. J. Tsai, C. Wen-Fei, C. T. Li, T. Pei-Chi, et al., "Comparison of inflammatory cytokine levels among type I/type II and manic/hypomanic/euthymic/depressive states of bipolar disorder," J Affect Disord, vol. 166, pp. 187-92, Sep 2014.
    [108] D. R. Ribeiro, A. M. Ramos, P. L. Vieira, E. Menti, O. L. Bordin, Jr., P. A. Souza, et al., "High-sensitivity C-reactive protein as a predictor of cardiovascular events after ST-elevation myocardial infarction," Arq Bras Cardiol, vol. 103, pp. 69-75, Jul 2014.
    [109] M. H. Rapaport, A. A. Nierenberg, P. J. Schettler, B. Kinkead, A. Cardoos, R. Walker, et al., "Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study," Mol Psychiatry, Mar 24 2015.
    [110] C. L. Raison, R. E. Rutherford, B. J. Woolwine, C. Shuo, P. Schettler, D. F. Drake, et al., "A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers," JAMA Psychiatry, vol. 70, pp. 31-41, Jan 2013.
    [111] R. Uher, K. E. Tansey, T. Dew, W. Maier, O. Mors, J. Hauser, et al., "An Inflammatory Biomarker as a Differential Predictor of Outcome of Depression Treatment With Escitalopram and Nortriptyline," Am J Psychiatry, Jul 14 2014.
    [112] B. P. Brennan, J. L. Roberts, K. V. Fogarty, K. A. Reynolds, J. M. Jonas, and J. I. Hudson, "Memantine in the treatment of binge eating disorder: an open-label, prospective trial," Int J Eat Disord, vol. 41, pp. 520-6, Sep 2008.
    [113] M. Schaefer, K. Leopold, A. Hinzpeter, A. Heinz, and M. Krebs, "Memantine-associated reversal of clozapine-induced weight gain," Pharmacopsychiatry, vol. 40, pp. 149-51, Jul 2007.
    [114] B. I. Goldstein, D. E. Kemp, J. K. Soczynska, and R. S. McIntyre, "Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: a systematic review of the literature," J Clin Psychiatry, vol. 70, pp. 1078-90, Aug 2009.
    [115] A. M. Myint, Y. K. Kim, R. Verkerk, S. Scharpe, H. Steinbusch, and B. Leonard, "Kynurenine pathway in major depression: evidence of impaired neuroprotection," J Affect Disord, vol. 98, pp. 143-51, Feb 2007.
    [116] H. Hsuchou, A. J. Kastin, P. K. Mishra, and W. Pan, "C-reactive protein increases BBB permeability: implications for obesity and neuroinflammation," Cell Physiol Biochem, vol. 30, pp. 1109-19, 2012.
    [117] C. R. Kuhlmann, L. Librizzi, D. Closhen, T. Pflanzner, V. Lessmann, C. U. Pietrzik, et al., "Mechanisms of C-reactive protein-induced blood-brain barrier disruption," Stroke, vol. 40, pp. 1458-66, Apr 2009.
    [118] A. H. Miller, V. Maletic, and C. L. Raison, "Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression," Biol Psychiatry, vol. 65, pp. 732-41, May 1 2009.
    [119] K. Yasojima, C. Schwab, E. G. McGeer, and P. L. McGeer, "Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer's disease," Brain Res, vol. 887, pp. 80-9, Dec 22 2000.
    [120] B. E. Leonard, "The concept of depression as a dysfunction of the immune system," Curr Immunol Rev, vol. 6, pp. 205-212, Aug 2010.
    [121] C. B. Zhu, R. D. Blakely, and W. A. Hewlett, "The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters," Neuropsychopharmacology, vol. 31, pp. 2121-31, Oct 2006.
    [122] M. Leboyer, I. Soreca, J. Scott, M. Frye, C. Henry, R. Tamouza, et al., "Can bipolar disorder be viewed as a multi-system inflammatory disease?," J Affect Disord, vol. 141, pp. 1-10, Dec 1 2012.
    [123] M. N. Quan, N. Zhang, Y. Y. Wang, T. Zhang, and Z. Yang, "Possible antidepressant effects and mechanisms of memantine in behaviors and synaptic plasticity of a depression rat model," Neuroscience, vol. 182, pp. 88-97, May 19 2011.
    [124] G. Sani, G. Serra, G. D. Kotzalidis, S. Romano, S. M. Tamorri, G. Manfredi, et al., "The role of memantine in the treatment of psychiatric disorders other than the dementias: a review of current preclinical and clinical evidence," CNS Drugs, vol. 26, pp. 663-90, Aug 1 2012.
    [125] S. L. Chen, P. L. Tao, C. H. Chu, S. H. Chen, H. E. Wu, L. F. Tseng, et al., "Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats," J Neuroimmune Pharmacol, vol. 7, pp. 444-53, Jun 2012.
    [126] P. Marques-Vidal, S. Velho, D. Waterworth, G. Waeber, R. von Kanel, and P. Vollenweider, "The association between inflammatory biomarkers and metabolically healthy obesity depends of the definition used," Eur J Clin Nutr, vol. 66, pp. 426-35, Apr 2012.
    [127] J. Saltevo, M. Vanhala, H. Kautiainen, and M. Laakso, "Levels of adiponectin, C-reactive protein and interleukin-1 receptor antagonist are associated with the relative change in body mass index between childhood and adulthood," Diab Vasc Dis Res, vol. 4, pp. 328-31, Dec 2007.
    [128] B. Vuksan-Cusa, M. Sagud, and M. Jakovljevic, "C-reactive protein and metabolic syndrome in patients with bipolar disorder compared to patients with schizophrenia," Psychiatr Danub, vol. 22, pp. 275-7, Jun 2010.
    [129] D. E. Laaksonen, L. Niskanen, K. Nyyssonen, K. Punnonen, T. P. Tuomainen, V. P. Valkonen, et al., "C-reactive protein and the development of the metabolic syndrome and diabetes in middle-aged men," Diabetologia, vol. 47, pp. 1403-10, Aug 2004.
    [130] C. T. Teng and F. N. Demetrio, "Memantine may acutely improve cognition and have a mood stabilizing effect in treatment-resistant bipolar disorder," Rev Bras Psiquiatr, vol. 28, pp. 252-4, Sep 2006.
    [131] Y. Nakamura, S. Kitamura, A. Homma, K. Shiosakai, and D. Matsui, "Efficacy and safety of memantine in patients with moderate-to-severe Alzheimer's disease: results of a pooled analysis of two randomized, double-blind, placebo-controlled trials in Japan," Expert Opin Pharmacother, vol. 15, pp. 913-25, May 2014.
    [132] T. Araki, R. Wake, T. Miyaoka, K. Kawakami, M. Nagahama, M. Furuya, et al., "The effects of combine treatment of memantine and donepezil on Alzheimer's disease patients and its relationship with cerebral blood flow in the prefrontal area," Int J Geriatr Psychiatry, vol. 29, pp. 881-9, Sep 2014.
    [133] T. Kishi and N. Iwata, "NMDA receptor antagonists interventions in schizophrenia: Meta-analysis of randomized, placebo-controlled trials," J Psychiatr Res, vol. 47, pp. 1143-9, Sep 2013.
    [134] I. A. Clark, L. M. Alleva, and B. Vissel, "The roles of TNF in brain dysfunction and disease," Pharmacol Ther, vol. 128, pp. 519-48, Dec 2010.
    [135] R. Yirmiya and I. Goshen, "Immune modulation of learning, memory, neural plasticity and neurogenesis," Brain Behav Immun, vol. 25, pp. 181-213, Feb 2011.
    [136] L. Capuron and A. H. Miller, "Immune system to brain signaling: neuropsychopharmacological implications," Pharmacol Ther, vol. 130, pp. 226-38, May 2011.
    [137] J. Liu, M. W. Wang, P. Gu, Q. Y. Ma, Y. Y. Wang, Y. Geng, et al., "Microglial activation and age-related dopaminergic neurodegeneration in MPTP-treated SAMP8 mice," Brain Res, vol. 1345, pp. 213-20, Jul 23 2010.
    [138] K. Ozawa, K. Hashimoto, T. Kishimoto, E. Shimizu, H. Ishikura, and M. Iyo, "Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia," Biol Psychiatry, vol. 59, pp. 546-54, Mar 15 2006.
    [139] D. Gimeno, M. Kivimaki, E. J. Brunner, M. Elovainio, R. De Vogli, A. Steptoe, et al., "Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study," Psychol Med, vol. 39, pp. 413-23, Mar 2009.
    [140] H. H. Chang, I. H. Lee, P. W. Gean, S. Y. Lee, M. H. Chi, Y. K. Yang, et al., "Treatment response and cognitive impairment in major depression: association with C-reactive protein," Brain Behav Immun, vol. 26, pp. 90-5, Jan 2012.
    [141] D. Ben-Shachar and R. Karry, "Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression," PLoS One, vol. 3, p. e3676, 2008.
    [142] S. Tuncbilek, "Relationship between cytokine gene polymorphisms and chronic hepatitis B virus infection," World J Gastroenterol, vol. 20, pp. 6226-35, May 28 2014.
    [143] Y. Gu, I. T. Harley, L. B. Henderson, B. J. Aronow, I. Vietor, L. A. Huber, et al., "Identification of IFRD1 as a modifier gene for cystic fibrosis lung disease," Nature, vol. 458, pp. 1039-42, Apr 23 2009.
    [144] R. Villegas, R. J. Goodloe, B. E. McClellan, Jr., J. Boston, and D. C. Crawford, "Gene-carbohydrate and gene-fiber interactions and type 2 diabetes in diverse populations from the National Health and Nutrition Examination Surveys (NHANES) as part of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study," BMC Genet, vol. 15, p. 69, 2014.
    [145] Q. Qi, A. Y. Chu, J. H. Kang, J. Huang, L. M. Rose, M. K. Jensen, et al., "Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies," BMJ, vol. 348, p. g1610, 2014.
    [146] M. J. Khoury, R. Davis, M. Gwinn, M. L. Lindegren, and P. Yoon, "Do we need genomic research for the prevention of common diseases with environmental causes?," Am J Epidemiol, vol. 161, pp. 799-805, May 1 2005.
    [147] P. Kraft and D. Hunter, "Integrating epidemiology and genetic association: the challenge of gene-environment interaction," Philos Trans R Soc Lond B Biol Sci, vol. 360, pp. 1609-16, Aug 29 2005.
    [148] K. E. Whitfield and G. McClearn, "Genes, environment, and race: quantitative genetic approaches," Am Psychol, vol. 60, pp. 104-14, Jan 2005.
    [149] H.-G. M. Fang Yao, and Jane-Ling Wang, "Functional linear regression analysis for longitudinal data," Ann. Statist., vol. 33, pp. 2873-2903, 2005.
    [150] A. Kshirsagar, A. Seftel, L. Ross, M. Mohamed, and C. Niederberger, "Predicting hypogonadism in men based upon age, presence of erectile dysfunction, and depression," Int J Impot Res, vol. 18, pp. 47-51, Jan-Feb 2006.
    [151] S. Cathcart and F. Materazzo, "Headache interference as a function of affect and coping: an artificial neural network analysis," Headache, vol. 39, pp. 270-4, Apr 1999.
    [152] R. A. Krill and S. Kumra, "Metabolic consequences of second-generation antipsychotics in youth: appropriate monitoring and clinical management," Adolesc Health Med Ther, vol. 5, pp. 171-82, 2014.
    [153] A. P. A. American Diabetes Association, American Association of Clinical Endocrinologists, North American Association for the Study of Obesity, "Consensus development conference on antipsychotic drugs and obesity and diabetes," J Clin Psychiatry, vol. 65, pp. 267-72, Feb 2004.
    [154] S. M. Grundy, J. I. Cleeman, S. R. Daniels, K. A. Donato, R. H. Eckel, B. A. Franklin, et al., "Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement," Circulation, vol. 112, pp. 2735-52, Oct 25 2005.
    [155] M. Alvarez-Jimenez, C. Gonzalez-Blanch, J. L. Vazquez-Barquero, R. Perez-Iglesias, O. Martinez-Garcia, T. Perez-Pardal, et al., "Attenuation of antipsychotic-induced weight gain with early behavioral intervention in drug-naive first-episode psychosis patients: A randomized controlled trial," J Clin Psychiatry, vol. 67, pp. 1253-60, Aug 2006.
    [156] H. A. Nasrallah and J. W. Newcomer, "Atypical antipsychotics and metabolic dysregulation: evaluating the risk/benefit equation and improving the standard of care," J Clin Psychopharmacol, vol. 24, pp. S7-14, Oct 2004.
    [157] C. B. Nemeroff, "Safety of available agents used to treat bipolar disorder: focus on weight gain," J Clin Psychiatry, vol. 64, pp. 532-9, May 2003.
    [158] J. G. Fiedorowicz, D. D. Miller, J. R. Bishop, C. A. Calarge, V. L. Ellingrod, and W. G. Haynes, "Systematic Review and Meta-analysis of Pharmacological Interventions for Weight Gain from Antipsychotics and Mood Stabilizers," Curr Psychiatry Rev, vol. 8, pp. 25-36, Feb 1 2012.
    [159] T. H. Taveira, W. C. Wu, E. Tschibelu, D. Borsook, D. C. Simonson, R. Yamamoto, et al., "The effect of naltrexone on body fat mass in olanzapine-treated schizophrenic or schizoaffective patients: a randomized double-blind placebo-controlled pilot study," J Psychopharmacol, vol. 28, pp. 395-400, Apr 2014.

    無法下載圖示 校內:2020-07-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE