| 研究生: |
張瑋芸 Chang, Wei-Yun |
|---|---|
| 論文名稱: |
溶膠-凝膠法製備染料敏化太陽電池TiO2薄膜光電極之光電性能研究 Photovoltaic Performance of the Dye-sensitized Solar Cells based on the TiO2 film photoelectrodes fabricated by a sol-gel method |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 溶膠旋轉塗佈法 、二氧化鈦 、染料敏化太陽能電池 |
| 外文關鍵詞: | sol-gel, TiO2, dye-sensitized solar cell |
| 相關次數: | 點閱:71 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以溶膠-旋轉塗佈法製備TiO2薄膜的製程簡單,設備成本低廉,然而,一般應用於染料敏化太陽能電池(DSSC)的研究難以克服燒結後膜裂與膜厚限制的問題;本研究以此法合成出具有不同表面型態的TiO2奈米結構薄膜應用於DSSC中並測試其光電性質表現。實驗中以水解分散於異丙醇溶劑中的四丁氧基鈦(Ti(OC4H9)4)做為開端,並以硝酸作為溶膠-凝膠反應中的催化劑;在膠溶反應進行的同時加入高分子添加劑,並將前驅溶膠液旋轉塗佈於透明導電玻璃上以製成TiO2薄膜。適當地調控高分子添加劑的劑量,薄膜的型態可從破裂且分散的島嶼狀變成連續並均勻性佳的奈米顆粒薄膜,相較於其他同領域的研究,薄膜的厚度也有顯著的提升(7-8µm)。當可合成連續性的薄膜後,我們發現硝酸濃度(pH值的差異)對於的粒子大小與比表面積、粉體分散度也有深遠影響,並與短路電流值直接相關。研究中在最佳化條件下可得到效率為6.63%,電流密度為18.76 mA/cm2,開環電壓為0.68 V,填充因子為0.52的元件光電輸出值。在本篇論文中將詳盡描述硝酸濃度與高分子添加劑對薄膜型態進而對整體光電性質的影響。
The sol-spin method is an easy and low-cost process to prepare the TiO2 films, however, there is a layer thickness limitation and it’s difficult to prepare films without cracking after calcination in the present researches appling to dye-sensitized solar cells. Nano-structured TiO2 films with different morphologies were fabricated and used as photo electrodes for assembling of dye-sensitized solar cells (DSSC) and the DSSCs were tested for their photovoltaic performance. Titanium n-butoxide (Ti(OC4H9)4, 99%, Acros) was hydrolyzed in the presence of isopropyl alcohol and catalyzed by nitric acid. After peptization and addition of polymeric additives, the resultant sol was spin-coated on transparent fluorine-doped tin oxide substrates to obtain nano-structured TiO2 films. By controlling the added amounts of polymeric additives, the morphology of the nano-structured TiO2 film was found to vary significantly from isolated- island form with numerous cracks to continuous film composed of nano-sized particles, and a remarkable increase of film thickness with 7-8 μm by sol-spin method is also achieved. The photovoltaic performance of DSSC depends strongly on the morphology of the film, once the continuous film is realized, the short circuit current was enhanced significantly by controlling the particle size and specific area which is the result of nitric acid concentration adjustment (pH difference). Under an optimum condition, a photoelectrical conversion efficiency (η) of 6.63 was obtained (with Voc=0.68V, F.F.=0.52 and Isc=18.76 mA/cm2). In this thesis, the experimental procedure and the effects of nitric acid and the polymeric additives on the film morphology are described. The effects of the film morphology on the photovoltaic performance are also discussed.
1. M. Grätzel, Nature, 403,363 (2000).
2. M. A. Green et al., Prog. Photovolt:Res.Appl., 61-67(2008).
3. B. O’Regan, M. Grätzel, Nature, 353, 737 (1991).
4. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc., 115, 6382 (1993)
5. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc., 123, 1613 (2001).
6. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc., 80, 3157 (1997)
7. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Sol. Energy Mater. Sol. Cells, 77, 89 (2003)
8. T. Horiuchi, H. Miura, S. Uchida, Chem. Commun., 3036 (2003).
9. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson, A. Azam, M. Grätzel, J. Electrochem. Soc., 143, 3099 (1996)
10. B. O’Regan, D. T. Schwartz, Chem. Mater., 10, 1501 (1998)
11. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature, 395, 583 (1998)
12. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, Nature materials, 2, 402 (2003)
13. C. Longo, A. F. Nogueira, M.-A. D. Paoli, J. Phys. Chem. B, 106, 5925 (2002)
14. A. Kay, M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 99 (1996)
15. N. J. Cherepy, G. P. Smestad, M. Grätzel, J. Z. Zhang, J. Phys. Chem. B, 101, 9342 (1997)
16. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, J. Phys. Chem. B, 104, 2053 (2000)
17. K. Honda, and A. Fujishima, Nature, 37, 238 (1972)
18. A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochemistry and Photobiology C: Photochemistry Reviews 1, 1 (2000)
19. U. Diebold, Surf Sci Rep., 48,53(2003)
20. O. K. Varghese, D. W. Gong, M. Paulose, K. G. Ong, C. A Grimes, Sens Actuator B-Chem., 93, 338 (2003)
21. J. C. Yu ,W. K. Ho, J. Lin, K. Y. Yip, P. K. Wong, Environ Sci Technol., 37, 2296 (2003)
22. G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, C. A. Grimes, J Mater Res., 19, 628 (2003)
23. P. Zeman, S. Takabayashi, J Vac Sci Technol A-Vac SurfFilms, 20, 388 (2002)
24. H. Zhang, JF. Banfield, J. Phys. Chem. B, 104, 3481-3487 (2000)
25. A. L. Linsebigler, Chem. Rev., 95, 735-758 (1995)
26. J. Augustynski, Electrochimica acta, 38, 43-46 (1993)
27. N.G. Park, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B ,104, 8989-8994 (2000)
28. C. Jeffrey Brinker and George W. Scherer, Sol Gel Science, Academic Press (1990)
29. M. A. Aegerter, Sol-gel: science and technology, NewJersey, World Scientific (1989)
30. D. M. Mattox, Thin Solid Films, 204, 25 (1991)
31. B. E. Yoldas, J. Mater. Sci., 21,1087-1092 (1986)
32. K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai and Y. Iguchi, J. Mater. Sci., 29, 1617 (1984)
33. F. Cot, A. Larbot, G. Nabias ,L. Cot, J. Eur. Cream. Soc., 18, 2175 (1998)
34. H. K. Park, D. K. Kim, and C. H. Kim, J. Am. Chem. Soc.,80 , 743-749 (1997)
35. H. K. Park, Y. T. Noon, D. K. Kim and C. H. Kim, J. Am. Chem. Soc., 79, 2727-2734 (1996)
36. Y. Wei, R. Wu, Y. Zhang, Mater. Lett., 41, 101-103(1999)
37. W. J. Dawson, Cream. Bull., 67, 1673-1678 (1988)
38. J. Yang, S. Mei, M. F. Rerreira, J. Am. Chem. Soc., 83, 1361-1368 (2000)
39. M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi , M. Toyoda, Inter. J. Inorg. Mater., 3, 809-811 (2001)
40. H. Cheng, J. Ma, Z. Zhao and L. Qi, Chem. Mater. , 7, 663 (1995)
41. D. J. Shaw, Introduction to colloid and surface chemistry, 4th edition,
Butterworths (1997)
42. E. J. Kim, S. H. Oh, S. H. Hahn, Chem. Eng. Communications, 187, 171-184 (2001)
43. R. B. Zhang, L. Gao, Mater. Res. Bull., 37, 1659-1666 (2002)
44. E. J. Kim, S. H. Hahn, Mater. Sci. Eng. A, 303, 24-29 (2001)
45. I-Pin Chen, Mei-Chi Jiang, Chia-Nan University of Pharmacy and Science Thesis for the Degree of Master, (2009)
46. H. Schmidt, M. Mennig, Sol-Gel gateway (2000)
47. http://mtigroup.en.ec21.com/Titanium_Thermal_Spray_Coating--3606908_3606965.html
48. K.R. Patil, S.D. Sathaye, Y.B. Khollam, S.B. Deshpande, N.R. Pawaskar,
A.B. Mandale, Mater. Lett., 57, 1775–1780 (2003)
49. http://materials.web.psi.ch/Research/Thin_Films/Methods/Spin.htm
50. Y. Zhenxing, Journal of Maganetism and Materials, 208, 55 (2000)
51. G. P. Smestad, M. Grätzel, J. Chem. Educ., 75, 752, (1998)
52. M. Gratzel, Nature, 414, 338-344 (2001)
53. D. Matthews, P. Infelta, M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 119 (1996)
54. A. N.M.Green,E.Palomares, J.Phys.Chem.B., 109, 12525-12533 (2005)
55. M. Grätzel, Inorg. Chem., 44, 6841 (2005)
56. M. Grätzel, Current Opinion in Colloid & Interface Science, 4, 314-321, (1999)
57. K. Kalyanasundaram , M. Grätzel, Coord. Chem. Rev., 77, 347-414 (1998)
58. A. Fujishima et al., Sol. Energy Mater. Sol. Cells, 81, 197-203 (2004)
59. G. Franco, J. Gehring, L. M. Peter, E.A. Ponomarev, I. Uhlendorf, J. Phys. Chem. B, 103, 692 (1999)
60. Y. Diamant, S. G. Chen, O. Melamed, A. Zaban, J. Phys. Chem. B, 107, 1977 (2003)
61. A. Hagfeldt, M. Grätzel, Chem. Rev., 95, 49 (1995)
62. J.H. Yum, S. Nakade, D.Y. Kim, S. Yanagida,“ J. Phys. Chem. B, 110, 3215-3219 (2006)
63. T. Ma, M. Akiyama, E. Abe, I. Imai, Nano Lett., 12, 2543-2547 (2005)
64. Q. Li, W.Liang, J.K.Shang, Appl. Phys. Lett ., 90, 063109 (2007)
65. Y.H. Su, W.H. Lai, L.G. Teoh, M.H. Hon, J.L. Huang, Appl. Phys. A, 88, 173-178 (2007)
66. 劉茂煌, 工業材料, 203, 91-97 (2003)
67. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, J. Phys. Chem. B, 104, 2053 (2000)
68. G. J. Meyer, J. Chem. Educ., 74, 652 (1997).
69. M. Grätzel Lab, J. Am. Chem. Soc, J. Am. Chem. Soc, 127,16835-16847 (2005)
70. G. Wolfbauer, A. Bond, J. C. Eklund, D. R. MacFarlane, Solar Energy Mater. & Solar Cells, 70, 85 (2001)
71. N. Kopidakis, K. D. Benkstein, J. Lagemaat, A. J. Frank, J. Phys. Chem. B, 107, 11307 (2003)
72. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, Nano Lett., 6, 669 (2006)
73. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc., 127, 3456 (2005)
74. J. M. Pringle, J. Golding, C. M. Forsyth, G. B. Deacon, M. Forsyth, D. R. MacFarlane, J. Mater. Chem., 12, 3475 (2002)
75. P. Wang, S. M. Zakeeruddin, J. E. Moster, M. Gratzel, J. Phys. Chem. B, 107, 13280 (2003)
76. C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki, J. F. Brennecke, J. Chem. Eng. Data, 49,954 (2004)
77. P. Wang, S. M. Zakeeruddin, R. H. Baker, M. Gratzel, Chem. Mater., 16, 2684 (2004)
78. M. Zistler, C. Schreiner, P. Wasserscheid, D. Gerhard, H. J. Gores, Int. J. Electrochem. Sci., 3, 236 (2008)
79. P. Wang, S. M. Zakeeruddin, J. E. Moster, R. H. Baker, M. Gratzel, J. Am. Chem. Soc., 126, 7164 (2004)
80. D. Gerhard, S. C. Alpaslan, H. J. Gores, M. Uerdingen, P. Wasserscheid, Chem. Commun., 5080 (2005)
81. D. Kuang, P. Wang, S, Ito, S. M. Zakeeruddin, M. Gratzel, J. Am. Chem. Soc., 128, 7732 (2006)
82. C. Capiglia, Y. Saito, H. Kataoka, T. Kodama, E. Quartarone, P. Mustarelli, Solid State Ionics, 131,291 (2000)
83. T. Stergiopoulos, L. M. Arabatzis, G. Katsaros, Nano Lett., 2, 1259 (2002)
84. Y. L. Lee, Y. J. Shen, Y. M. Yang, Nanotechnology, 19, 455201 (2008)
85. Wei Chen, Junying Zhang, Qi Fang, Shu Li, Jianxin Wu, Fanqing Li, Ke Jiang, Sens. Actuators, B, 100, 195–199 (2004)
86. K.TERABE, K. KATO, H. MIYAZAKI, S.YAMAGUCHI , A.IMAI, Y.IGUCHI, J. Mater. Sci. Lett., 29, 1617-1622 (1994)
87. Hiromitsu KOZUKA, J. Ceram. Soc. Jpn., 111,9, 624-632 (2003)
88. Vaishali Patil, Arun Patil, Ji-Won Choi, Seok-Jin Yoon, Solid State Science, 13,6,1232-1234 (2011)
89. Julija Sabataityte, Ilona Oja, Frank Lenzmann, Olga Volobujeva, Malle Krunks, C. R. Chimie, 9, 708–712 (2006)
90. I-Ying Chang, NCKU Thesis Research Proposal (2011)
91. Yongxiang Li, Jurgen Hagen , Winfried Scharath , Peter Otschik , Dietrich Haarer, Sol. Energy Mater. Sol. Cells, 56, 167-174 (1999)
92. Young Sam Jin, Kyung Hwan Kim, Hyung Wook Choi, J. Korean Phy. Soc., 57, 4, 1049-1053 (2010)
93. K. Srikanth , Md.M. Rahman, H. Tanaka, K.M. Krishna, T. Soga, M.K. Mishra, T. Jimbo, M. Umeno, Sol. Energy Mater. Sol. Cells, 65, 171-177 (2001)
94. Mohammad Hossein Habibi, Mojtaba Nasr-Esfahani, Dyes and Pigments, 75, 714-722 (2007)
95. Shoichiro Yano, Keisuke Iwata, Kimio Kurita, Mater. Sci. Eng., C, 6, 75-90 (1998)
96. Hiromitsu Kozuka, Masahiro Kajimura, J. Am. Ceram. Soc., 83,5, 1056 – 1062 (2000)
97. Zhenkun Lin, Tianfang Wang, Xu Han, Donglin Han, Shufen Li, J. Anal. Appl. Pyrolysis, 81, 121–126 (2008)
98. M.J Zohuriaan, F Shokrolahi, Polym. Test., 23, 5, 575-579 (2003)
99. Yu-Wen Chen, Tzu-Ming Yen, Chiuping Li, J. Non-Cryst. Solids, 185, 49-55 (1995)
100. R. Kavian, A. Saidi, J. Alloys Compd., 468, 528–532 (2009)
101. Zilong Tang, Junying Zhang, Zhe Cheng, Zhongtai Zhang, Mater. Chem. Phys., 77 314–317 (2002)
102. Chin-Mei Wang, doctoral dissertation (2012)
103. Nobuhiro Fuke, Atsushi Fukui, Ryohichi Komiya, Ashraful Islam, Yasuo Chiba, Chem. Mater., 20, 4974–4979 (2008)
104. B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, El-Aasser MS, Langmuir, 17, 2664 (2001)
105. D. M. Chen, Z. Y. Jiang, J. Q. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res., 46, 2741 (2007)
106. Carlo G. Pantano , T. N. Wittberg, 15,498-501(1990)
107. M. M. Rahman, K. M. Krishna, T. Soga, T. Jimbo, M. Umeno, J. Phys. Chem. Solids., 60, 201 (1999)
108. Y. Xie, X. Zhao, Y. Chen, Q. Zhao, Q. Yuan, J. Solid State Chem., 180, 3576 (2007)
109. C. S. Gopinath, S. G. Hegde, A. V. Ramaswamy, S. Mahapatra, Mater. Res. Bull., 37, 1323 (2002)
110. Akash Katoch, Hohyeong Kim, Taejin Hwang, Sang Sub Kim, J Sol-Gel Sci Technol , 61, 77–82 (2012)
111. Agne`s Pottier, Sophie Cassaignon, Corinne Chane´ac, Francoise Villain, Elisabeth Tronc, Jean-Pierre Jolivet, J. Mater. Chem., 13, 877–882 (2003)