簡易檢索 / 詳目顯示

研究生: 陳俞安
Chen, Yu-An
論文名稱: 廢棄釩液流電池質子交換膜循環技術之研究
Circulation of Waste Proton Exchange Membrane from Vanadium Flow Battery
指導教授: 陳偉聖
Chen, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 102
中文關鍵詞: 釩液流電池質子交換膜離子交換Dowex G26釩吸附
外文關鍵詞: vanadium flow battery, proton exchange membrane, ion exchange, vanadium adsorb, Dowex G26
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 釩液流電池為一種新興的再生能源儲能系統,在充放電的過程中,電池組中質子交換膜會因釩離子堵塞而導致廢棄,為了達到永續經營及循環經濟的目的,本研究將針對該廢棄質子交換膜提出一可行的資源化方式。本研究分為兩部分,第一為使用離子交換法提取廢棄薄膜中釩離子,解決堵塞問題以及回收釩金屬資源;第二部分為以注形成膜方式製備再生薄膜,並分析其基本特性。
    第一部分離子交換法階段,本研究首先將廢棄薄膜溶解於50%乙醇水溶液中,測定溶液中釩離子濃度為74 mg/L後,以硫酸氧釩及市售薄膜分散液配置模擬液。在離子交換法批次實驗中,Dowex G26、IRA-200為兩種適合在薄膜溶液中吸附釩的陽離子交換樹脂,兩種樹脂的等溫吸附模型顯示吸附行為符合Langmuir單層吸附模型,且飽和吸附量為94.34mg/g與58.65mg/g,熱力學分析結果得到Dowex G26吸附釩的反應為自發性的吸熱反應。在離子交換管柱實驗中,測得Dowex G26吸附釩在進料流速1 ml/min、操作體積10ml、總操作體積140BV,有飽和吸附量81.855 mg/g,脫附部分使用1 mol/L的HCl進行脫附,總操作體積5BV下有最佳脫附率97.5%,富集液濃度為1596.72ppm,富集比為21.29。金屬沉澱析出使用銨鹽沉釩法,在pH=5、nNH4Cl:nV=2:1條件下,有最佳沉澱率97.8%。
    第二部分為再生薄膜成膜及特性分析,首先將經過離子交換後的薄膜溶液,以DMSO置換製備成膜前驅液,接著以注形成膜方式製成再生薄膜,分析該薄膜的基本特性,得到再生薄膜平均膜厚度為209.2μm;薄膜含水率為25.98%;FTIR分析符合售薄膜圖譜但部分峰值不明顯;薄膜離子交換容積為0.565 meq/g;離子導電度為3.62×10-3 S/cm,較於廢棄的膜提升了數倍性能,但尚無法達到與市售薄膜相同的表現。

    This study aims to provide a sufficiency and simple method to recycle vanadium resource and recover membrane from waste proton exchange membrane of vanadium flow battery. This study is divided into two parts, which is recovery vanadium by ion exchange and recast of proton exchange membrane. In the first part, the waste membrane was dissolved in 50% ethanol solution to obtain membrane dispersion which concentration of vanadium was 74 mg/L. In the ion exchange batch experiment, the adsorptive behavior of the cation exchange resin Dowex G26 was correspond to Langmuir model and the maximum adsorb capacity were 94.34. The adsorption and elution column experiment was carried out by Dowex G26 resin. The optimal parameter of adsorption part was flow rate 1ml/min, BV=10ml and total 140BV, and the saturated adsorption capacity reach 81.855 mg/g. In elution part, 1 mol/L HCl, total 5BV was used to elute vanadium from resin, and the concentration of enrichment solution was 1596.72 ppm which elution efficiency was 97.5%. The vanadium was precipitated by adjusting pH value to 5 and adding NH4Cl to obtain the solid ammonium metavanadate. The ammonium metavanadate was calcined in 450oC and 12 hours to get vanadium(V) oxide. In the second part, the dispersion was recast to obtain recycled membrane. The recycle membrane has average thickness 209.2μm, moisture 25.98%, ion exchange capacity 0.565 meq/g and ion conductivity 3.62×10-3 S/cm.

    目錄 中文摘要 I Abstract II 致謝 X 目錄 XI 圖目錄 XIII 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 理論基礎與文獻回顧 4 2.1釩液流電池與質子交換膜簡介 4 2.1.1釩液流電池 4 2.1.2質子交換膜 8 2.1.3 釩之性質及資源現況 13 2.2資源化技術基礎理論 15 2.2.1 離子交換法 16 2.2.2金屬成品析出 34 2.2.3 注形成膜 36 2.3 釩電池質子交換膜資源化文獻回顧 37 2.3.1 釩金屬資源化文獻回顧 37 2.3.2 質子交換膜資源化文獻回顧 41 第三章 研究方法與步驟 43 3.1 實驗材料 43 3.1.1 實驗樣品 43 3.1.2 實驗藥品 43 3.2 研究架構 46 3.3 實驗流程 47 3.3.1 廢棄質子交換膜前處理與特性分析 47 3.3.2 離子交換法 48 3.3.3 金屬產品析出 52 3.3.4 注形成膜 53 3.4 研究設備與儀器 57 第四章 結果與討論 59 4.1 廢棄質子交換膜前處理與特性分析 59 4.2 離子交換法 61 4.2.1 批次實驗 61 4.2.2 離子交換管柱實驗 69 4.2.3 離子交換樹脂小結 72 4.3 金屬產品析出 74 4.3.1 銨鹽沉釩 74 4.3.2 煅燒 76 4.3.3 金屬氧化物產品特性分析 77 4.4 再生薄膜特性分析 78 4.4.1 膜厚度測量 78 4.4.2 薄膜含水率測定 79 4.4.3 FTIR分析 80 4.4.4 離子交換容積滴定 85 4.4.5 離子導電度分析 86 4.4.6 再生薄膜特性分析小結 91 第五章 結論與建議 93 5.1 結論 93 5.2 建議 95 參考文獻 96

    參考文獻

    [1] R. Gundlapalli, S. Kumar, S. Jayanti, "Stack Design Considerations for Vanadium Redox Flow Battery," INAE Letters, vol. 3, p. 149~157, 2018.
    [2] K.W. Knehr, E.C. Kumbur, "Open circuit voltage of vanadium redox flow batteries: Discrepancy between models and experiments," Electrochemistry Communications, vol. 13, p. 342~345, 2011.
    [3] R. Zhang, B. Xia, B. Li, L. Cao, Y. Lai, W. Zheng, H. Wang, W. Wang, M. Wang, "A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature," Energies, vol. 11, no. 2048, p. 1~17, 2018.
    [4] U.S. Department of Energy, Global Energy Storage Database Projects (7-8-2020), Washington, D.C., U.S.A., 2020.
    [5] Sigma-Aldrich, "Nafion™ perfluorinated membrane Nafion™ 117, thickness 0.007 in. | Sigma-Aldrich," [Online]. Available: https://www.sigmaaldrich.com/catalog/product/aldrich/274674?lang=en®ion=US. [Accessed 9 2020].
    [6] R. Chen, S. Kim,Z. Chang., “Redox Flow Batteries: Fundamentals and Applications. Redox - Principles and Advanced Applications., DOI: 10.5772/intechopen.68752,” 2017.
    [7] M. Rychcik, M. Skyllas-Kazacos, "Characteristics of a new all-vanadium redox flow battery," Journal of power sciences, vol. 22, p. 59~67, 1988.
    [8] B. Sun, M. Skyllas-Kazacos, "Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment," Electrochimica Acta, vol. 37, no. 7, p. 1253~1260, 1992.
    [9] B. Sun, M. Skyllas-Kazacos, "Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments," Electrochimica Acta, vol. 37, no. 13, p. 2459~2465, 1992.
    [10] M. Rychcik, M. Skyllas-Kazacos, "Evaluation of electrode materials for vanadium redox cell," Journal of power sciences, vol. 19, p. 45~54, 1987.
    [11] S. C. Chieng, M. Kazacos, M. Skyllas-Kazacos, "Preparation and evaluation of composite membrane for vanadium redox battery applications," Journal of power sciences, vol. 39, p. 11~19, 1992.
    [12] S. Weber, J. F. Peters, M. Baumann, M. Weil, "Life Cycle Assessment of a Vanadium Redox Flow Battery," Environ. Sci. Technol., vol. 52, p. 10864−10873, 2018.
    [13] L.F. Arenas, C. Ponce de León, F.C. Walsh, "Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage," Journal of Energy Storage, vol. 11, p. 119~153, 2017.
    [14] K. A. Mauritz, R. B. Moore, "State of Understanding of Nafion," Chem. Rev., vol. 104, p. 4535~4585, 2004.
    [15] M. B. Karimi, F. Mohammadi, K. Hooshyari, "Recent approaches to improve Nafion performance for fuel cell applications: A review," International journal of hydrogen energy, vol. 44, p. 28919~28938, 2019.
    [16] N. Shrivastava, T. Harris, "Direct Methanol Fuel Cells," Encyclopedia of Sustainable Technologies, vol. 3, p. 343~357, 2017.
    [17] C. Minke, T. Turek, "Economics of vanadium redox flow battery membranes," Journal of Power Sources, vol. 286, p. 247~257, 2015.
    [18] J. S. Lawton, A. Jones, T. Zawodzinski, "Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries," Journal of The Electrochemical Society, vol. 160, no. 4, p. A697~A702, 2013.
    [19] H. L. Yeager, A. Steck, "Cation and Water Diffusion in Nafion Ion Exchange Membranes: Influence of Polymer Structure," Journal of The Electrochemical Society, vol. 128, no. 9, p. 1880~1884, 1981.
    [20] S. P. Fernandez Bordín, H. E. Andrada, A. C. Carrerasa, G. E. Castellano, R. G. Oliveira, V. M. Galván Josa, "Nafion membrane channel structure studied by small-angle X-ray scattering and Monte Carlo simulations," Polymer, vol. 155, no. 24, p. 58~63, 2018.
    [21] F. I. Allen, L. R. Comolli, A. Kusoglu∥, M. A. Modestino, A. M. Minor, A. Z. Weber∥ , "Morphology of Hydrated As-Cast Nafion Revealed through Cryo Electron Tomography," ACS Macro Lett, vol. 4, no. 1, p. 1~5, 2015.
    [22] K. Schmidt-Rohr, Q.Chen, "Parallel cylindrical water nanochannels in Nafion fuel-cell membranes," Nature Materials, vol. 7, p. 75~83, 2008.
    [23] W. Y. Hsu, T. D.Gierke, "Ion transport and clustering in nafion perfluorinated membranes," Journal of Membrane Science, vol. 13, no. 3, p. 307~326, 1983.
    [24] M. B. Karimi, F. Mohammadi, K. Hooshyari , "Recent approaches to improve Nafion performance for fuel cell applications: A review," International journal of hydrogen energy, vol. 44, p. 28919~28938, 2018.
    [25] M. Vijayakumar, M.S. Bhuvaneswari, P. Nachimuthu, B. Schwenzer, S. Kim, Z.Yang, J. Liu, G. L. Graff, S. Thevuthasan, J. Hu, " Spectroscopic investigations of the fouling process on Nafion membranes in vanadium redox flow batteries," Journal of Membrane Science, vol. 366, p. 325~334, 2011.
    [26] J. S. Lawton, D. S. Aaron, Z. Tang, T. A. Zawodzinski, "Qualitative behavior of vanadium ions in Nafion membranes using electron spin resonance," Journal of Membrane Science, vol. 428, p. 38~45, 2013.
    [27] Y. Zhou, L.Yu, J. Wang, L. Liu, F. Liang, J. X, "Rational use and reuse of Nafion 212 membrane in vanadium flow batteries," RSC Advances, vol. 7, p. 19425~19433, 2017.
    [28] B. Schwenzer, S. Kim, M. Vijayakumar, Z. Yang, J.Liu, "Correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties," Journal of Membrane Science, vol. 372, p. 11~19, 2011.
    [29] 施雅云, “"廢脫硝觸媒中鉬及釩之資源化研究",碩士論文,國立成功大學,” 2017.
    [30] 趙秦生,李中軍, 釩冶金, 長沙: 中南大學出版社, 2015.
    [31] U.S. Geological Survey, “Mineral Commodity Summaries, Reston, Virginia, U.S.A,” 2020.
    [32] 蘇英源、郭金國, “冶金學,” 全華科技圖書股份有限公司, 2000, pp. 3-1-4-20.
    [33] F. C. Liew, "Pyrometallurgy Versus Hydrometallurgy," TES-AMM Singapore Engineering Department, Published April, p. 2008.
    [34] T. D.Reynolds, 於 Unti operations and processes in environmental engineering, International Thomson Publishing Asia, 1982, p. 150~391.
    [35] 張文青, 分離分析化學, 華東理工大學出版社, 2007, p. 157~183.
    [36] G.Schmuckler, 於 Chelating resins-their ana analytical properties and applications, Talanta Vol. 12, 1965, p. 281~290.
    [37] 朱屯, “萃取與離子交換,” 冶金工業出版社, 2005, p. 387~471.
    [38] 王廣珠、汪德良、崔煥芳, “離子交換樹脂使用及診斷技術,” 化學工業出版社, 2004, p. 12~14.
    [39] A. Wolowicz, Z. Hubicki, "Comparison of strongly basic anion exchange resins applicability for the removal of palladium(II) ions from acidic solutions," Chemical Engineering Journal , vol. 171, no. 1, p. 206~215, 2011.
    [40] A. M. Donia, A. A. Atia, "Uptake studies of copper(II)onglycidyl methacrylate chelating resin containing Fe2O3 particles," Separation and Purification Technology, vol. 49, p. 64~70, 2006.
    [41] R.R. Navarro, K. Tatsumi, "Role of anions on heavy metal sorption of a cellulose modified with poly (glycidyl methacrylate) and polyethyleneimine," Wat. Res., vol. 35, no. 11, p. 2724~2730, 2001.
    [42] A. A. Atia, A. M. Donia, "Selective separation of mercury(II) using a synthetic resin containing amine and mercaptan as chelating groups," Reactive & Functional Polymers, vol. 65, p. 267~275, 2005.
    [43] A. Dabrowski, Z. Hubicki, P. Podkoscielny, "Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method," Chemosphere, vol. 56, p. 91~106, 2004.
    [44] P. Ling, F. Liu, "Adsorption of divalent heavy metal ions onto IDA- chelating resins: Simulation of physicochemical structures and elucidation of interaction mechanisms," Talanta, vol. 81, p. 424~434, 2010.
    [45] R. F. Helms, Evaluation of ion exchange for demineralization of waste water, Master's Thesis, University of Colorado, 1973.
    [46] W. J. Weber, Physicochemical processes for water quality control., New York, 1972.
    [47] M. J. Hu, Separation of Vanadium and Molybdenum ions in Blue Sludge leachate by Ion Exchange Resin, Master's Thesis, National Cheng Kung University, 2013.
    [48] M. A. S. D. Barros, P. A. Arroyo, E. A. Silva, "General Aspects of Aqueous Sorption Process in Fixed Beds," Mass Transfer - Advances in Sustainable Energy and Environment Oriented Numerical Modeling, p. 362~383, 2013.
    [49] S. Pramanik, P. K. Dhara, "A chelating resin containing bis(2- benzimidazolylmethyl)amine: synthesis and metal-ion uptake properties suitable for analytical application," Talanta, vol. 63, p. 485~490, 2004.
    [50] W. Li, H. Zhao , P. R. Teasdale, R. John, "Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd," Reactive & Functional Polymers, vol. 52, p. 31~41, 2002.
    [51] D. M. Ruthven, “Principles of adsorption and adsorption processes,” John Wiley and Sons, 1984.
    [52] 周書葵, 放射性廢水處理技術, 中國化學工業出版社, 2012.
    [53] T. D. Reynolds, “Unti operations and processes in environmental engineering,” International Thomson Publishing Asia, 1982, p. 350~391.
    [54] Y. Liu, Y. Liu, "Review Biosorption isotherms, kinetics and thermodynamics," Separation and Purification Technology, vol. 61, p. 229~242, 2002.
    [55] R. Donat, "Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions," Journal of Colloid and Interface Science, vol. 286, p. 43~52, 2005.
    [56] M. Ajmal, R. A. K. Rao, "Adsorption of copper from aqueous solution on Brassica cumpestris (mustard oil cake)," Journal of Hazardous Materials, vol. B122, p. 177~183, 2005.
    [57] M. H. Khani, H.Pahlavanzadeh, "Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae," Journal of Hazardous Materials, vol. 150, p. 612~618, 2008.
    [58] N. Takeno, "Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases," Natl. Inst. Adv. Ind. Sci. Technol. Tokyo, no. 419, p. 2005, 2005.
    [59] P. Xiong, Y. Zhang, S. Baoa, J. Huang, "Precipitation of vanadium using ammonium salt in alkaline and acidic media and the effect of sodium and phosphorus," Hydrometallurgy, vol. 180, p. 113~120, 2018.
    [60] Z. Fu, Y. Zhang, T. Liu, J. Huang, X. Yang, "Impact of impurity ions on vanadium precipitation process of stripping solution from vanadium extraction of stone coal.," Chin. J. Rare Metals, vol. 40, no. 10, p. 1060~1065, 2016.
    [61] L. Ma, Y. Zhang, T. Liu, J. Huang, "Enhancing effect of precipitating vanadium in acid ammonium salt.," Chinese Journal of Rare Metals, vol. 33, no. 6, p. 936~939, 2009.
    [62] H. I. Gomes, A. Jones, M. Rogerson, G. M. Greenway, D. F. Lisbona, I. T. Burke, W. M. Mayes, "Removal and recovery of vanadium from alkaline steel slag leachates with anion exchange resins," Journal of Environmental Management, vol. 187, p. 384~392, 2017.
    [63] J. Huang, P. Su, W. Wu, S. Liao, H. Qin, X. Wu, X. He, L. Tao, Y. Fan, "Concentration and separation of vanadium from alkaline media by strong alkaline anion-exchange resin 717," Rare Metals, vol. 29, p. 439~443, 2010.
    [64] A. Keränen, T. Leiviskä, A. Salakka, J. Tanskanen, "Removal of nickel and vanadium from ammoniacal industrial wastewater by ion exchange and adsorption on activated carbon," Desalination and Water Treatment, vol. 53, no. 10, p. 2645~2654, 2015.
    [65] L. Zeng, Q. Li, L. Xiao, "Extraction of vanadium from the leach solution of stone coal using ion exchange resin," Hydrometallurgy, vol. 97, no. 3-4, p. 194~197, 2009.
    [66] J. Hu, X. Wang, L. Xiao, S. Song, B. Zhang, "Removal of vanadium from molybdate solution by ion exchange," Hydrometallurgy, vol. 95, p. 203~206, 2009.
    [67] J. S. Fritz, J. E. Abbink, "Cation exchange seperation of vanadium from metal ions," Analytical Chemistry, vol. 34, no. 9, p. 1080~1082, 1962.
    [68] P. N. Nomngongo, J. C. Ngila, J. N. Kamau, T. A. M. Msagati, B. Moodley, "Preconcentration of molybdenum, antimony and vanadium in gasolsine samples using Dowex 1-x8 resin and their determination with inductively coupled plasma–optical emission spectrometry," Talanta, vol. 110, no. 15, p. 153~159, 2013.
    [69] S. Drużyński, K. Mazurek, K. Białowicz, "The use of ion exchange in the recovery of vanadium from the mass of a spent catalyst used in the oxidation of SO2 to SO3," Polish Journal of Chemical Technology, vol. 16, no. 2, p. 69~73, 2014.
    [70] L. Zeng, L. S. Xiao, Q. G. Li , X. Y. Xiang, "Study on separation of vanadium from ammonium molybdate solution by ion exchange," Rare Metal and Hard Alloy, vol. 37, p. 1~4, 2006.
    [71] Q. Li, L. Zeng, L. Xiao, Y. Yang, Q. Zhang, "Completely removing vanadium from ammonium molybdate solution using chelating ion exchange resins," Hydrometallurgy, vol. 98, p. 287~290, 2009.
    [72] H-F. Xu, X. Wang, Z-G. Shao, I-M. Hsing, "Recycling and regeneration of used perfluorosulfonic membranes for polymer electrolyte fuel cells," Journal of Applied Electrochemistry, vol. 32, p. 1337~1340, 2002.
    [73] F. Xu, S. Mua, M. Pan, "Recycling of membrane electrode assembly of PEMFC by acid processing," International journal of hydrogen energy, vol. 35, p. 2976~2979, 2010.
    [74] J. A. Moghaddam, M. J. Parnian, S. Rowshanzamir , "Preparation, characterization, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications," Energy, vol. 161, p. 699~709, 2018.
    [75] R.F. Silva, M. D. Francesco, A. Pozio, "Solution-cast Nafion® ionomer membranes: preparation and characterization," Electrochimica Acta, vol. 49, p. 3211~3219, 2004.
    [76] M. Laporta, M. Pegoraro, L. Zanderighi, "Recast Nafion-117 thin film from water solution," Macromol. Mater. Eng, vol. 282, p. 22~29, 2000.
    [77] R. B. Moore, C. R. Martin, "Procedure for Preparing Solution-Cast Perfluorosulfonate Ionomer Films and Membranes," Anal Chem, vol. 58, p. 2569~2570, 1986.
    [78] J.Weber P.Janda L.Kavan A.Jegorov, "Study of Nafion films on electrodes prepared from dimethylacetamide solution," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vols. 200, Issue 1~2, p. 379~381, 1986.
    [79] G. Gebel, P. Aldebert, M. Pineri , "Structure and related properties of solution-cast perfluorosulfonated ionomer films," Macromolecules, vol. 20, no. 6, p. 1425~1428, 1987.
    [80] T. T. Chen, J. Leddy, "Ion Exchange Capacity of Nafion and Nafion Composites," Langmuir, vol. 16, no. 6, p. 2866~2871, 2000.
    [81] J. R. Macdonald , “Impedance Spectroscopy,” Annals of Biomedical Engineering, 第 冊20, p. 289~305, 1992.
    [82] W-S Chen, C-H Lee, H-J Ho, "Purification of Lithium Carbonate from Sulphate Solutions through Hydrogenation Using the Dowex G26 Resin," applied sciences, vol. 8, no. 2252, 2018.
    [83] Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou, W. Li, G. Sun, Q. Xin, "FT-IR study of the microstructure of Nafion® membrane," Journal of Membrane Science, vol. 233, p. 39~44, 2004.
    [84] A. Sari, D. Mendil, M. Tuzen, "Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass : Equilibrium, kinetic and thermodynamic studies," Chemical Engineering Journal, vol. 144, p. 1~9, 2008.
    [85] A. Sarı, M. Tuzen,D. Cıtak, "Adsorption characteristics of Cu (II) and Pb (II) onto expanded perlite from aqueous solution," Journal of Hazardous Materials, vol. 148, p. 387~394, 2007.

    無法下載圖示 校內:2025-12-18公開
    校外:2025-12-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE