簡易檢索 / 詳目顯示

研究生: 蕭淳瑞
Siao, Chun-Ruei
論文名稱: 充填相變化微膠囊顆粒之矩形容器熱能儲存特性研究
A Study of Thermal Energy Storage Characteristics in a Rectangular Enclosure Packed with Microencapsulated Phase Change Material Particles
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 89
中文關鍵詞: 相變化材料微膠囊熱能儲存
外文關鍵詞: Microencapsulated Phase Change Material, Thermal Energy Storage
相關次數: 點閱:122下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係以數值模擬與實驗的方式探討填充相變化材料微膠囊顆粒之矩形容器其熱能儲存之特性。 矩形容器左右垂直壁面分別為等溫加熱/冷卻壁面,其餘邊壁為絕熱壁。微膠囊內含相變化材料為18烷。 容器冷熱壁間溫度差分別維持在12、16、18與20oC,其相關無因次參數及範圍如下:高寬比,AR = 1;達西數,Da = 1.42×10E-9;普蘭度數,Prf =0.707;萊利數, Raf =1.67×10E7~2.78×10E7;史蒂芬數,Stem=0.125~0.23;及次冷參數,Sbc=-0.375~0.25。 此外,針對所探討的實驗模型建構對應之數學模式,並進行與實驗相對應條件之數值模擬,分析容器內相變化材料微膠囊熔解過程,進而探討其熱能儲存量和速率。

    The present study aims to examine, via a complementary approach of experimental measurement and numerical simulation, thermal energy storage characteristics in a rectangular enclosure of air packed with microencapsulated phase change material (MPCM). The enclosure is differentially heated by the two vertical isothermal surfaces, while the other surfaces are considered thermally insulated. The core phase change material within the MPCM is n-Octadecane. Thermal energy storage experiments have been undertaken for various temperatures differences between hot and cold surfaces across the enclosure of 12C, 16C, 18C, 20C, with the pertinent dimensionless parameters in the following ranges: the aspect ratio, AR = 1; the Darcy number, Da = 1.42×10E-9; the Prandtl number, Prf = 0.707; the Rayleigh number, Raf =1.67×10E7~2.78×10E7; the Stefan number, Stem = 0.125 ~ 0.230; and the subcooling factor, Sbc = 0.375 ~ 0.250. Numerical simulations have been performed based on a mathematical modeling mimicking the experimental configuration considered to further elucidate the heat transfer characteristics and the thermal energy storage efficiency of the enclosure.

    第一章 序論.......................................1 1-1 前言..........................................1 1-2 文獻回顧......................................2 1-3 研究目的.......................................5 1-4 本文架構.......................................6 第二章 實驗模型與實驗方法...........................11 2-1 實驗模型.......................................11 2-2 相關設備.......................................16 2-3 實驗方法與步驟..................................17 2-4 實驗數據計算...................................18 2-5 不準度估算.....................................21 第三章 物理模型與數值模擬...........................22 3-1 物理模型.......................................22 3-2 數學模式........................................23 3-2-1 統御方程式.................................23 3-2-2 初始與邊界條件.............................27 3-2-3 無因次化統御方程式與邊界條件.................27 3-2-4 數值方法與解題方式.........................33 第四章 結果與討論...................................41 4-1 熱物性質量測結果.................................41 4-1-1 孔隙率.....................................41 4-1-2 熱傳導係數..................................42 4-1-3 密度、潛熱、比熱.............................42 4-2 矩形容器內相變化微膠囊顆粒熱能儲存特性之結果.........43 4-2-1 數值模擬結果................................45 4-2-2 實驗結果與數值模擬結果比較....................52 第五章 結論與未來方向.................................81 參考文獻...............................................83 附錄 不準度分析.........................................87 自述...................................................89

    Ahmed, M., Meade, O., Medina, M.A., “Reducing Heat Transfer across the Insulated Walls of Refrigerated Truck Trailers by the Application of Phase Change Materials,” Energy Conversion and Management, Vol.51,pp.383-392,2010.

    Beckermann, C., Viskanta, R., Ramadhyani, S., “A Numerical Study of Non-Darcian Natural Convection in a Vertical Enclosure Filled with a Porous Medium,” Numerical Heat Transfer, Vol.10, pp.557-570, 1986.

    Evers, A.C., Medina, M.A., Fang, Y., “ Evaluation of the Thermal Performance of Frame Walls Enhanced with Paraffin and Hydrated Salt Phase Materials using a Dynamic Wall Simulator,” Building and Environment, Vol.45, pp.1762-1768, 2010.

    Heim, D., “ Isothermal Storage of Solar Energy in Building Construction,” Renewable Energy, Vol.35, pp.788-796, 2009.

    Ho, C.J., “A Continuum Model for Transport Phenomena in Convective Flow of Solid-Liquid Phase Change Material Suspensions,” Applied Mathematical Modeling, Vol.29, 805-817, 2005.

    Huang, Y.L., “Experimental Investigation of Fluid Flow and Internal Convection Heat Transfer in Mini/Micro Porous Median,” Heat and Mass Transfer International Conference, December, 18-21, 2009.

    Hubble, O., Diller, E., “A Hybrid Method for Measuring Heat Flux,” Journal of Heat Transfer, Vol. 132, 031602-1,2010.

    Ismail, K.A.R, Moraes, R.I.R., “ A Numerical and Experimental Investigation of Different Containers and PCM Options for Cold Storage Modular Unit for Domestic Applications,” International Journal of Heat and Mass Transfer, Vol.51, pp.4195-4202, 2009.

    Kladias, N., Prasad, V., “Experimental Verification of Darcy-Brinkman-Forchheimer Flow Model for Natural Convection in Porous Media,” Journal of Thermophysics and Heat Transfer, Vol.5, NO.4, pp.50-576,1990.

    Lauriat, G., Prasad, V., “Non-Darcian Effects on Natural Convection in a Vertical Porous Enclosure,” International Communications in Heat and Mass Transfer, Vol.32, pp.2135-2148,1989.

    Liu,H., Awbi, H.B., “Performance of Phase Change Material Boards under Natural Convection,” Building and Environment, Vol.44, pp.1788-1793,2009.

    Marvel, R.L., Lai, F.C., “Natural Convection From a Porous Cavity With Sublayers of Nonuniform Thickness: A Lumped System Analysis,” Journal of Heat Transfer, Vol.132, 032602-1,2010.

    Nakayama, A., Ando, K., Yang, C., “A Study on Interstitial Heat Transfer in Consolidated and Unconsolidated Porous Media,” Heat and Mass Transfer, Vol. 45, pp.1365-1372,2009.

    Pourshaghaghy, A., Hakkaki-Fard, A., Mahdavi-Nejad, A., “Direct Simulation of Natural Convection in Square Porous Enclosure,” Energy Conversion and Management, Vol. 48, pp.1579-1589,2007.

    Saeid, N.H., Pop, I., “Non-Darcy Natural Convection in a Square Cavity Filled with a Porous Medium,” Fluid Dynamics Research, Vol.36, pp.35-43,2004.

    Saito, M.B., Lemos, M.J.S.D., “Laminar Heat Transfer in Porous Channel Simulated with a Two-Energy Equation Model,” International Communications in Heat and Mass Transfer, Vol.36, pp.1002-1007,2009.

    Varol, Y., Oztop, H.F., Mobedi, M., Pop, I., “Visualization of Heat Flow Using Bejan’s Heatline due to Natural Convection of Water near in Thick Walled Porous Cavity,” International Journal of Heat and Mass Transfer, Vol.53, pp.1691-1698,2010.

    Wang, J., Xie, H., Xin, Z., “Thermal Properties of Paraffin Based Composites Containing Multi-Walled Carbon Nanotubes,” Thermochimica Acta, Vol.488, pp.39-42, 2009.

    Wu, S., Fang, G., Liu, X., “Dynamic Charging Performance of a Solar Latent Heat Storage Unit for Efficient Energy Utilization,” Chemical Engineering Technology, Vol.33, pp.455-460,2010.

    陳嘉正,“方形容器內充填相變化材料微膠囊之熱能儲存特性研究” ,國立成功大學機械工程研究所碩士論文,2009.

    劉文恭,“方形容器內氧化鋁-水奈米流體之自然對流熱傳現象之實驗研究” ,國立成功大學機械工程研究所碩士論文,2007.

    下載圖示 校內:2011-08-26公開
    校外:2011-08-26公開
    QR CODE