| 研究生: |
吳俊賢 Wu, Chun-Hsien |
|---|---|
| 論文名稱: |
支承勁度對浮動式道床振動模態之影響 The Influence of Bearing Stiffness on Modes of Vibration of Floating Slab Track |
| 指導教授: |
郭振銘
Kuo, Chen-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 浮動式道床 、模態分析 、振動模態 、支承勁度 、衝擊槌試驗 |
| 外文關鍵詞: | Floating slab track, Modal analysis, Modes of vibration, Bearing stiffness, Hammer Test |
| 相關次數: | 點閱:220 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用理論模態分析以及實驗模態分析,將兩者之優勢結合,透過模擬數據與現地實驗數據相互驗證後,再利用驗證完成之模型進行道床因支承老化、疲勞而勁度改變之情境模擬,並研讀橡膠材料性質之文獻作為情境模擬依據,可了解未來浮動式道床軌道底下橡膠支承變化對整個系統的影響,大幅提升模型之應用價值。
模擬分析方面,以ABAQUS/CAE軟體進行有限元素分析,模型建立參數以桃園機場捷運延伸線長版浮動式道床設計圖為基準,透過有限元素分析模擬,可求得各振動模態之自然頻率與模態振型,模態振型為實驗模態分析中不易得知者。
實驗模態分析方面,以衝擊槌試驗於桃園機場捷運延伸線A22老街溪站之長版浮動式道床進行現地實驗,透過SPR(Source, Path, Response)之系統傳遞觀念,再利用快速傅立葉轉換,求取頻率響應函數(Frequency Response Function),了解系統內涵,計算系統各振動模態之自然頻率。
模型與實驗驗證過程中發現,現地實驗之頻譜圖上單一尖峰常為一個或數個振動模態所組成,主要原因為部分振動模態自然頻率非常接近,且因系統阻尼影響使實驗數據頻譜難以觀測一尖峰共為幾個振動模態所組成。透過模擬中得知之模態振型,結合不同情境之支承勁度的改變,可得知支承勁度對系統自然頻率的影響,亦了解各振動模態之自然頻率受勁度影響的原因。
This paper combines with theoretical and experimental modal analysis. With the verification of simulation and field test, the model is used to simulate the effects of stiffness-changing from bearing aging or fatigue. This model could help realize the effects caused by the stiffness- changing of bearings under the floating slab to the whole system.
In simulation, ABAQUS/CAE was used to conduct the FEM analysis. The data were referred from the design of TIAA MRT Extension Line. With the FEM analysis, the natural frequencies and mode shapes in modes of vibration can be determined. Mode shape is the one which is difficult to realize in experimental analysis.
In field test, Hammer Test is used to conduct experimental modal analysis. The experimental location is at A22 station of TIAA MRT Extension Line. With the system transferring concept SPR (Source, Path, Response) combining with Fast Fourier Transform, then, Frequency Response Function can be determined and the system can be realized. Then, the natural frequency will be found.
In the process of verification, knowing that every peak in spectrums in the field test doesn’t represent only one mode of vibration. The main reason is that the natural frequencies of some modes of vibration are too close to know there are how many modes of vibration in a peak. With the modes of vibration knowing from simulation and combining different situations of bearing stiffness-changing. Knowing that the effects caused with bearing stiffness-changing to natural frequencies and every mode of vibration of system.
[1] A. P. De Man, "DYNATRACK:A survey of dynamic railway track properties and their quality," 12/3 2002.
[2] J. Blanco-Lorenzo, J. Santamaria, E. G. Vadillo, and O. Oyarzabal, "Dynamic comparison of different types of slab track and ballasted track using a flexible track model," Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 225, no. 6, pp. 574-592, 2011, doi: 10.1177/0954409711401516.
[3] C. M. Kuo, C. H. Huang, and Y. Y. Chen, "Vibration characteristics of floating slab track," Journal of Sound and Vibration, vol. 317, no. 3-5, pp. 1017-1034, 2008, doi: 10.1016/j.jsv.2008.03.051.
[4] C. K. Hui and C. F. Ng, "The effects of floating slab bending resonances on the vibration isolation of rail viaduct," Applied Acoustics, vol. 70, no. 6, pp. 830-844, 2009, doi: 10.1016/j.apacoust.2008.09.018.
[5] S. Zhu, J. Yang, H. Yan, L. Zhang, and C. Cai, "Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers," Vehicle System Dynamics, vol. 53, no. 9, pp. 1296-1314, 2015, doi: 10.1080/00423114.2015.1046460.
[6] 白御宏, "無道碴彈性基鈑軌道減振效能探討," 2018.
[7] 林德正, "軌道振動及其隔震系統減振效果之預估與實測比對," 2013.
[8] 余昌澤, "高隔振與浮動式軌道道床於減振效果之比較研究: 以台北捷運松山線為例," 2015.
[9] 林昱呈, "直接固定式與浮動式軌道道床於減振效果之比較: 以台北捷運松山線為例," 2015.
[10] S. Kaewunruen and A. M. Remennikov, "Sensitivity analysis of free vibration characteristics of an in situ railway concrete sleeper to variations of rail pad parameters," Journal of Sound and Vibration, vol. 298, no. 1-2, pp. 453-461, 2006, doi: 10.1016/j.jsv.2006.05.034.
[11] M. Amabili and S. Carra, "Experiments and simulations for large-amplitude vibrations of rectangular plates carrying concentrated masses," Journal of Sound and Vibration, vol. 331, no. 1, pp. 155-166, 2012, doi: 10.1016/j.jsv.2011.08.008.
[12] 黃國棟. 王栢村, "吉他之振動特性與模態分析," 中華民國音響學會, 2004.
[13] 尤保茗, "碳纖維/環氧樹脂複材板疲勞損傷及勁度衰減之關係研究," 2011.
[14] M. Sol-Sánchez, F. Moreno-Navarro, and M. C. Rubio-Gámez, "The use of deconstructed tire rail pads in railroad tracks: Impact of pad thickness," Materials & Design, vol. 58, pp. 198-203, 2014, doi: 10.1016/j.matdes.2014.01.062.
[15] M. Sol-Sánchez, F. Moreno-Navarro, and M. C. Rubio-Gámez, "Viability analysis of deconstructed tires as material for rail pads in high-speed railways," Materials & Design, vol. 64, pp. 407-414, 2014, doi: 10.1016/j.matdes.2014.07.071.
[16] I. A. Carrascal, J. A. Casado, J. A. Polanco, and F. Gutiérrez-Solana, "Dynamic behaviour of railway fastening setting pads," Engineering Failure Analysis, vol. 14, no. 2, pp. 364-373, 2007, doi: 10.1016/j.engfailanal.2006.02.003.
[17] 葉根成, "蘆洲線的隔振軌道—浮動道床施工與驗證," 捷運技術, 2009.
[18] 陳智誠, "捷運松山線軌道工程簡介," 捷運技術, 2017.
[19] 鄭國雄. 張思, 許俊逸, 顏啟仁, "隧道軌道振動污染防治分析探討," Tunnel Construction, 2011.
[20] Sungil Kim, "Experimental evaluations of track structure effects on dynamic properties of railway bridges," Journal of Vibration and Control, vol. 17, no. 12, pp. 1817-1826, 2011, doi: 10.1177/1077546310385264
校內:2022-01-01公開