簡易檢索 / 詳目顯示

研究生: 謝昀珈
Hsieh, Yun-Jia
論文名稱: 利用微流體系統合成高濃度且低介電常數的聚醯亞胺
Microfluidics-assisted polymerization of low-k polyimide using high monomer concentration
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 118
中文關鍵詞: 微流體聚醯胺酸聚醯亞胺液滴穩定性皮克林乳液高黏度反應低介電材料
外文關鍵詞: microfluidics, poly(amic acid), Pickering emulsion, droplet-based synthesis, high viscosity fluids, low-k polyimide
相關次數: 點閱:17下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立一套液滴式微流體平台,用於高濃度聚醯胺酸(PAA)溶液的合成,並探討液滴穩定化策略,目標為製備高性能、低介電聚醯亞胺(PI)材料。在液滴生成方面,採用 T-junction 與共軸流道設計。共軸流道搭配 PDMS 疏水塗層可有效改善 DMAc 液滴下沉與黏壁問題,提升液滴對稱性與穩定性。
      為防止液滴收集後融合,測試多種界面活性劑皆無法穩定 DMAc 液滴,後續引入雙重乳液與皮克林乳液策略。結果顯示,添加表面改質碳酸鈣奈米粒子的皮克林乳液能有效包覆液滴界面,抑制融合現象,並成功應用於後續 PAA 聚合反應。濃度提升實驗顯示,15 wt% 與 20 wt% PAA 溶液皆可穩定形成液滴,微流體製程具有較佳黏度穩定性與鏈段控制能力。GPC 分析指出,20 wt% 微流體樣品的多分散性指數(PDI)為 1.73,優於批次製程之 1.80,顯示微流體反應均勻性更佳。25 wt% 高濃度條件下,批次反應攪拌失效,微流體系統亦發生堵塞,改以重力滴落方式成功產生大型液滴(約 3000 μm)。
      此外,PI 性質分析顯示微流體製程所得聚醯亞胺薄膜在熱穩定性與介電性質方面與批次製程相當,但在光學性質上展現較高透光度,顯示其具備更佳的光學性質與潛在應用價值。
      本研究證實微流體系統於中高濃度條件下具備良好反應穩定性與聚合控制能力,皮克林乳液可有效提升液滴穩定性,而重力滴落技術則提供高黏度條件下的可行替代方案。

    This study developed a microfluidic droplet platform for synthesizing high-concentration poly(amic acid) (PAA) toward low-k polyimide (PI) applications. T-junction and co-flow channels were tested for droplet generation, with the latter combined with PDMS surface modification to overcome DMAc adhesion. Surfactant-based stabilization (Tween, Span, SDS, C12TAB) proved ineffective due to poor compatibility with polar solvents. Pickering emulsions using CaCO₃ nanoparticles (2.5 wt%) in n-hexadecane successfully stabilized DMAc and PAA droplets. Polymerized PAA droplets were purified via acid wash and vacuum drying. At 15–20 wt% PAA, microfluidic synthesis showed superior viscosity stability and narrower molecular weight distribution (PDI = 1.73–1.80) compared to batch synthesis. For 25 wt% PAA, injection failed due to high viscosity, so a gravity dripping method was applied to form large (~3000 μm) but stable droplets. This work demonstrates an effective strategy for stable droplet formation and polymerization in high-viscosity systems via Pickering stabilization.

    中文摘要 ii Extended Abstract iii 誌謝 x 目錄 xi 表目錄 xiv 圖目錄 xv 第一章 緒論 1 1.1 前言 1 1.2研究動機與方法 2 第二章 文獻回顧 3 2.1 液滴微流體 3 2.1.1 微流體系統介紹 3 2.1.2 液滴微流體的形成 5 2.2 利用微流體系統進行高分子合成 10 2.2.2 液滴微流體系統 16 2.3 液滴收集 21 2.3.1 界面活性劑 21 2.3.2 皮克林乳液 22 2.4 聚醯亞胺 24 2.4.1低介電常數聚醯亞胺 25 2.4.2 利用微反應器合成聚醯亞胺領域 27 第三章 實驗設備與步驟 31 3.1 實驗藥品與材料 31 3.1.1 微流道平台 31 3.1.2 低介電常數聚醯亞胺 34 3.1.3 液滴微流體實驗 35 3.2 實驗儀器與設備 38 3.2.1 微流道平台 38 3.2.2 低介電常數聚醯亞胺 43 3.3 實驗步驟 45 3.3.1 微流道製備 45 3.3.2 批次反應器合成低介電常數聚醯亞胺 47 3.3.3 微反應器合成低介電常數聚醯亞胺 49 第四章 結果與討論 52 4.1 液滴形成與流道設計 52 4.1.1 T字型流道 (T-junction) 52 4.1.2 共軸流道 ( Co-flow ) 56 4.2 液滴收集 59 4.2.1 界面活性劑 59 4.2.2 雙重液滴 62 4.2.3 皮克林乳液 70 4.3 提高濃度 75 4.3.1 聚醯亞胺合成 75 4.3.2 黏度及分子量分析 84 4.3.3 熱機械性質 88 4.3.4 介電性質 90 4.3.5 光學性質 92 第五章 結論 93 第六章 參考文獻 95

    1. Lebrun, E., V. Shenshin, C. Plaire, V. Vigneres, T. Pizette, B. Dumas, J.-M. Nicaud, and G. Mottet, Efficient full-length IgG secretion and sorting from single yeast clones in droplet picoreactors. Lab on a Chip. 23(15): p. 3487-3500, 2023.
    2. Johansson, S.A., T. Dulermo, C. Jann, J.D. Smith, A. Pryszlak, G. Pignede, D. Schraivogel, D. Colavizza, T. Desfougères, and C. Rave, Large scale microfluidic CRISPR screening for increased amylase secretion in yeast. Lab on a Chip. 23(16): p. 3704-3715, 2023.
    3. Kamnerdsook, A., E. Juntasaro, N. Khemthongcharoen, M. Chanasakulniyom, W. Sripumkhai, P. Pattamang, C. Promptmas, N. Atthi, and W. Jeamsaksiri, On classification of water-in-oil and oil-in-water droplet generation regimes in flow-focusing microfluidic devices. Colloids and Interfaces. 7(1): p. 17, 2023.
    4. Bojang, A.A. and H.-S. Wu, Design, fundamental principles of fabrication and applications of microreactors. Processes. 8(8): p. 891, 2020.
    5. Suryawanshi, P.L., S.P. Gumfekar, B.A. Bhanvase, S.H. Sonawane, and M.S. Pimplapure, A review on microreactors: Reactor fabrication, design, and cutting-edge applications. Chemical Engineering Science. 189: p. 431-448, 2018.
    6. Cubaud, T. and T.G. Mason, Capillary threads and viscous droplets in square microchannels. Physics of fluids. 20(5), 2008.
    7. Wei, C., C. Yu, S. Li, J. Meng, T. Li, J. Cheng, F. Pan, and J. Li, Easy-to-operate co-flow step emulsification device for droplet digital polymerase chain reaction. Analytical Chemistry. 94(9): p. 3939-3947, 2022.
    8. Kamnerdsook, A., E. Juntasaro, N. Khemthongcharoen, M. Chanasakulniyom, W. Sripumkhai, P. Pattamang, C. Promptmas, N. Atthi, and W. Jeamsaksiri, On Classification of Water-in-Oil and Oil-in-Water Droplet Generation Regimes in Flow-Focusing Microfluidic Devices. Colloids and Interfaces. 7(1), 2023.
    9. Nunes, J., S. Tsai, J. Wan, and H.A. Stone, Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. Journal of physics D: Applied physics. 46(11): p. 114002, 2013.
    10. Utada, A.S., A. Fernandez-Nieves, H.A. Stone, and D.A. Weitz, Dripping to jetting transitions in coflowing liquid streams. Physical review letters. 99(9): p. 094502, 2007.
    11. Iwasaki, T. and J.-i. Yoshida, Free radical polymerization in microreactors. Significant improvement in molecular weight distribution control. Macromolecules. 38(4): p. 1159-1163, 2005.
    12. Song, Y., M. Shang, H. Zhang, W. Xu, X. Pu, Q. Lu, and Y. Su, Process characteristics and rheological properties of free radical polymerization in microreactors. Industrial & Engineering Chemistry Research. 57(32): p. 10922-10934, 2018.
    13. Fukuyama, T., Y. Kajihara, I. Ryu, and A. Studer, Nitroxide-mediated polymerization of styrene, butyl acrylate, or methyl methacrylate by microflow reactor technology. Synthesis. 44(16): p. 2555-2559, 2012.
    14. Noda, T., A.J. Grice, M.E. Levere, and D.M. Haddleton, Continuous process for ATRP: Synthesis of homo and block copolymers. European Polymer Journal. 43(6): p. 2321-2330, 2007.
    15. Chen, K., W. Han, X. Hu, Y. Liu, Y. Hu, S. Zhao, N. Zhu, Z. Fang, and K. Guo, Microreactor-based chemo-enzymatic ROP-ROMP platform for continuous flow synthesis of bottlebrush polymers. Chemical Engineering Journal. 437: p. 135284, 2022.
    16. Jin, Z., H. Wang, X. Hu, Y. Liu, Y. Hu, S. Zhao, N. Zhu, Z. Fang, and K. Guo, Anionic polymerizations in a microreactor. Reaction Chemistry & Engineering. 7(5): p. 1026-1036, 2022.
    17. Wurm, F., D. Wilms, J. Klos, H. Loewe, and H. Frey, Carbanions on tap–Living anionic polymerization in a microstructured reactor. Macromolecular chemistry and physics. 209(11): p. 1106-1114, 2008.
    18. Furuta, A., K. Okada, and T. Fukuyama, Efficient anionic ring opening polymerization of ethylene oxide under microfluidic conditions. Bulletin of the Chemical Society of Japan. 90(7): p. 838-842, 2017.
    19. Lu, Y., S. Zhu, K. Wang, and G. Luo, Generation of Poly (isobutene-co-isoprene) in a Microflow Device. Industrial & Engineering Chemistry Research. 55(5): p. 1215-1220, 2016.
    20. Lovell, P.A. and F.J. Schork, Fundamentals of emulsion polymerization. Biomacromolecules. 21(11): p. 4396-4441, 2020.
    21. Zhou, Y., Y. Gu, K. Jiang, and M. Chen, Droplet-Flow Photopolymerization Aided by Computer: Overcoming the Challenges of Viscosity and Facilitating the Generation of Copolymer Libraries. Macromolecules. 52(15): p. 5611-5617, 2019.
    22. Lu, S. and K. Wang, Kinetic study of TBD catalyzed δ-valerolactone polymerization using a gas-driven droplet flow reactor. Reaction Chemistry & Engineering. 4(7): p. 1189-1194, 2019.
    23. Song, J., S. Zhang, K. Wang, and Y. Wang, Synthesis of million molecular weight polyacrylamide with droplet flow microreactors. Journal of the Taiwan Institute of Chemical Engineers. 98: p. 78-84, 2019.
    24. Reis, M.H., T.P. Varner, and F.A. Leibfarth, The Influence of Residence Time Distribution on Continuous-Flow Polymerization. Macromolecules. 52(9): p. 3551-3557, 2019.
    25. Baret, J.-C., Surfactants in droplet-based microfluidics. Lab on a Chip. 12(3): p. 422-433, 2012.
    26. de Carvalho-Guimarães, F.B., K.L. Correa, T.P. de Souza, J.R. Rodriguez Amado, R.M. Ribeiro-Costa, and J.O.C. Silva-Júnior, A review of Pickering emulsions: perspectives and applications. Pharmaceuticals. 15(11): p. 1413, 2022.
    27. Ming, L., H. Wu, A. Liu, A. Naeem, Z. Dong, Q. Fan, G. Zhang, H. Liu, and Z. Li, Evolution and critical roles of particle properties in Pickering emulsion: A review. Journal of molecular liquids. 388: p. 122775, 2023.
    28. Wu, J. and G.H. Ma, Recent studies of Pickering emulsions: particles make the difference. Small. 12(34): p. 4633-4648, 2016.
    29. Ma, P., C. Dai, H. Wang, Z. Li, H. Liu, W. Li, and C. Yang, A review on high temperature resistant polyimide films: Heterocyclic structures and nanocomposites. Composites Communications. 16: p. 84-93, 2019.
    30. Yi, C., W. Li, S. Shi, K. He, P. Ma, M. Chen, and C. Yang, High-temperature-resistant and colorless polyimide: Preparations, properties, and applications. Solar Energy. 195: p. 340-354, 2020.
    31. Zhuang, Y., J.G. Seong, and Y.M. Lee, Polyimides containing aliphatic/alicyclic segments in the main chains. Progress in Polymer Science. 92: p. 35-88, 2019.
    32. Gouzman, I., E. Grossman, R. Verker, N. Atar, A. Bolker, and N. Eliaz, Advances in Polyimide-Based Materials for Space Applications. Adv Mater. 31(18): p. e1807738, 2019.
    33. Liu, X.-J., M.-S. Zheng, G. Chen, Z.-M. Dang, and J.-W. Zha, High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy & Environmental Science. 15(1): p. 56-81, 2022.
    34. Lu, Q.-H. and F. Zheng, Polyimides for electronic applications, in Advanced polyimide materials. 2018, Elsevier. p. 195-255.
    35. Shamiryan, D., T. Abell, F. Iacopi, and K. Maex, Low-k dielectric materials. Materials today. 7(1): p. 34-39, 2004.
    36. Maier, G., Low dielectric constant polymers for microelectronics. Progress in polymer science. 26(1): p. 3-65, 2001.
    37. Wang, L., J. Yang, W. Cheng, J. Zou, and D. Zhao, Progress on polymer composites with low dielectric constant and low dielectric loss for high-frequency signal transmission. Frontiers in Materials. 8: p. 774843, 2021.
    38. Ge, M., J. Zhang, C. Zhao, C. Lu, and G. Du, Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for high-frequency copper clad laminates. Materials & Design. 182: p. 108028, 2019.
    39. Wu, X., C.a. Xu, M. Lu, K. Wang, Z. Li, and H. Yang, Preparation and characterization of high temperature resistant thermosetting polyphenylene ether resin. Journal of Applied Polymer Science. 139(39): p. e52858, 2022.
    40. Guo, J., H. Wang, C. Zhang, Q. Zhang, and H. Yang, MPPE/SEBS composites with low dielectric loss for high-frequency copper clad laminates applications. Polymers. 12(9): p. 1875, 2020.
    41. Hsu, L.-C., M.C. Yang, T. Higashihara, W.-C. Chen, and M. Ueda, Synthesis and characterization of poly (2, 6-dialkoxy-1, 5-naphthylene) s with low dielectric constants. Polymer Journal. 50(3): p. 277-280, 2018.
    42. Yin, Q., Y. Qin, J. Lv, X. Wang, L. Luo, and X. Liu, Reducing intermolecular friction work: preparation of polyimide films with ultralow dielectric loss from MHz to THz frequency. Industrial & Engineering Chemistry Research. 61(49): p. 17894-17903, 2022.
    43. Ji, Y., Y. Bai, X. Liu, and K. Jia, Progress of liquid crystal polyester (LCP) for 5G application. Advanced Industrial and Engineering Polymer Research. 3(4): p. 160-174, 2020.
    44. Zhang, W., Z. Peng, Q. Pan, S. Liu, and J. Zhao, Effect of fluorinated substituents on solubility and dielectric properties of the liquid crystalline poly (ester imides). ACS Applied Polymer Materials. 5(1): p. 141-151, 2022.
    45. Wu, Z., J. He, H. Yang, and S. Yang, Progress in aromatic polyimide films for electronic applications: Preparation, structure and properties. Polymers. 14(6): p. 1269, 2022.
    46. Liaw, D.-J., K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science. 37(7): p. 907-974, 2012.
    47. Ishizaka, T., A. Ishigaki, M. Chatterjee, A. Suzuki, T.M. Suzuki, and H. Kawanami, Continuous process for fabrication of size controlled polyimide nanoparticles using microfluidic system. Chemical Communications. 46(38): p. 7214-7216, 2010.
    48. Ishizaka, T., A. Ishigaki, M. Chatterjee, A. Suzuki, T.M. Suzuki, and H. Kawanami, Continuous fabrication of novel polyimide nanoparticles confining highly dispersed gold nanoparticles by a multistep microfluidic reaction system and their catalytic application. Chemistry Letters. 41(4): p. 447-449, 2012.
    49. Ishizaka, T., A. Ishigaki, A. Suzuki, T.M. Suzuki, and H. Kawanami, A Facile and Continuous Fabrication of Polyimide Hollow Nanoparticles Using a Microfluidic System. Chemistry Letters. 41(3): p. 221-223, 2012.
    50. Xu, W., Y. Su, M. Shang, X. Lu, and Q. Lu, Rapid synthesis of polyimide precursors by solution polymerization using Continuous-flow microreactors. Chemical Engineering Journal. 397, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE