簡易檢索 / 詳目顯示

研究生: 黃微珊
Huang, Wei-Shan
論文名稱: 可調性金銀鈀奈米雙殼結構用於提高表面增強拉曼散射與催化轉換應用
Tuning ternary Ag/Au:Pd nanoparticle composite for enhanced SERS and catalysis by heterogeneous wall structure
指導教授: 孫亦文
Sun, I-Wen
黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 88
中文關鍵詞: 表面增強拉曼散射賈凡尼置換金銀合金催化
外文關鍵詞: seed growth, CTAB, AuAg, AuAg:Pd, concave, catalyst, SERS
相關次數: 點閱:50下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中的第一部份是利用賈凡尼置換反應進行銀奈米方塊-金之間的氧化還原,並添加界面活性劑溴化十六烷基三甲銨(CTAB) 的輔助抑制特定晶面的成長,以腐蝕和共還原的反應策略形成具有凹面結構的金銀合金奈米材料。在此凹層的高活性原子具有高的電磁場效應能夠引起強大的表面增強拉曼散射。再經由調整反應參數,可以進一步獲得同時具有凹面與雙殼的奈米結構。此雙殼結構的金銀奈米材料在4-NP的催化反應中有較大的速率常數 (k)。這種反應策略還可以進一步延伸到三元金屬金銀鈀奈米複合材料,其以非常高的動力學常數改善原先金銀奈米材料的4-NP和4-NTP的催化反應。

    A seed growth process accompanied by a galvanic replacement reaction (etching and alloying) using CTAB/HAuCl4/AgNO3/ascorbic acid was developed to fabricate silver nanocubes with concave AgAu nanolayers. The solid nanostructure consists a concave face of the Ag inner solid counterpart with a hole surrounded by AgAu nanowall when adding 0.314 mL growth solution (GS). We found that the CTA+ ions played a vital role in the adsorption of Au(I)/CTA+ micelles selectively at the {100} facets to trigger galvanic replacement etching . Meanwhile, AgNO3-involving reaction help to switch the co-reduction of metal atoms from the [110] sites to the [100] vector and favored AgAu co-reduction atoms along {100} vector for concave AgAu nanolayer formation. Such AgAu atoms at the concave layer induced strong charge transfer-based surface-enhanced Raman scattering (SERS) when thiol molecules were bound to the active atoms. These highly active atoms at the concave facets aided to perform superior electron-transfer catalysis. After etching with H2O2 to produce pure-Ag-removed and concave AgAu nanowalls, the efficiencies of the SERS and catalysis performances were damaged due to the decrease in the active atoms density. Increasing of GS to 1.259 mL, the solid nanostructure possesses two concave sites of inner and outer wall counterpart with a hole. The AgAu1/4 double-wall structure stands out in catalytic reaction of 4‐NP. This reaction strategy of simultaneous etching and co-reduction could be further extend to the trimetallic AgAu:Pd nanocomposite synthesis, which improved the hydrogenation reaction of both 4‐NP and 4-NTP with a very high kinetic constant.

    Chapter 1 Introduction 1 1.1 Noble metal nanoparticle 1 1.1.1 Surface Plasmon Resonance (SPR) 1 1.2 Surface-enhanced Raman scattering 3 1.2.1 Electromagnetic (EM) enhancement 4 1.2.2 Chemical (CHEM) enhancement 4 1.2.3 SERS spectra of alloy system 4 1.3 Synthesis of the alloy nanostructure 5 1.3.1 Galvanic Replacement Reaction 5 1.3.1.1 Au (III) precursor: HAuCl4 6 1.3.1.2 Au (I) precursor: HAuCl2 6 1.3.2 Seeded Growth 7 1.3.2.1 Bimetallic concave nanostructure 7 1.3.2.2 AuAg bimetallic nanostructure 8 1.4 Applications of nano-catalyst 9 1.4.1 4NP catalytic reaction network for diffusion 9 1.4.2 Reduction of 4-NTP molecule at the support–catalyst interface 9 1.4.3 Reduction of 4-NTP molecule with Pd-addictive 10 Chapter 2 Motivation 23 Chapter 3 Materials and Methods 26 3.1 Materials 26 3.2 Equipment 28 3.3 Methods 29 3.3.1 Synthesis of Ag nanocubes 29 3.3.2 Synthesis of AuAg nanolayer and concave AuAg:Pd nanolayer 29 3.3.3 Synthesis of AuAg double-wall nanostructure and AuAg@Pd double-wall nanostructure 30 3.3.4 Raman scattering measurement 31 3.3.5 Catalytic reduction of 4-nitrophenol (4-NP) 31 3.3.6 In Situ SERS Monitoring of the Reduction of 4-Nitrothiophenol (4-NTP) 31 Chapter 4 Results and discussion 33 4.1 Characterization of solid-supported concave AuAg nanolayers 33 4.1.1 Morphological and Compositional TEM Analysis 33 4.1.2 XPS analysis of chemical state of elements present on a sample surface 34 4.1.3 Schematic illustration of concave AuAg nanolayers 35 4.1.4 The various effects of the synthesis process 35 4.1.5 Selective etching of Ag from solid-supported concave AuAg nanolayers 36 4.1.6 Reduction of 4-nitrophenol 37 4.1.7 SERS demonstration of AuAg nanolayers 38 4.2 Characterization of concave AuAg:Pd nanolayer 40 4.2.1 TEM Morphology 40 4.2.2 Raman spectra of concave AuAg:Pd nanolayer with different Pd content 40 4.2.3 In situ SERS monitoring of the reduction of 4-nitrothiopheol by concave AuAg:Pd nanolayer 41 4.2.4 Reduction of 4-nitrophenol with concave AuAg:Pd nanolayer 42 4.3 Characterization of AuAg double-wall structure 45 4.3.1 Synthesis of AuAg double-wall structure 45 4.3.2 Synthesis of AuAg nanostructure in the absence of ascorbic acid 45 4.3.3 Element contents 46 4.3.4 Precise structural analysis of double-walled nanostructure 47 4.3.5 SERS properties of various double-wall nanostructure 48 4.4 Characterization of AuAg@Pd double-wall structure 49 4.4.1 Synthesis of AuAg@Pd double-wall structure 49 4.4.2 Reduction of 4-NP with AuAg double-wall nanocatalyst 50 4.4.3 Reduction of 4-NP with AuAg@Pd nanocatalyst with different Pd content 51 4.4.4 Raman spectra of AuAg@Pd double-wall nanostructure with different Pd content 52 4.4.5 Raman spectra of AuAg@Pd double-wall nanostructure with different Pd content 53 Chapter 5 Conclusion 78 Chapter 6 Summary and Future Works 79 Reference 82

    1. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. The Journal of Physical Chemistry B, 2005, 109, 13857–13870.
    2. Wang, Z. The Journal of Physical Chemistry B, 2000, 104, 1153–1175.
    3. Huang, X.; El-Sayed, M. A. Journal of advanced research 2010, 1, 13-28.
    4. Xu, J.; Han, X.; Liu, H.; Hu, Y. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 273, 179-183.
    5. Bashir, O.; Hussain, S.; AL-Thabaiti, S. A.; Khan, Z. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 140, 265-273.
    6. Gharibshahi, E.; Saion, E.; Ashraf, A.; Gharibshahi, L. Applied Radiation and Isotopes 2017, 130, 211-217.
    7. Majeed, M. S.; Dhahir, M. K. International Journal of Engineering Research and Applications 2016, 6, 12-17.
    8. He, J.; Ichinose, I.; Kunitake, T.; Nakao, A.; Shiraishi, Y.; Toshima, N. Journal of the American Chemical Society 2003, 125, 11034-11040.
    9. Peng, H.-I.; Strohsahl, C. M.; Leach, K. E.; Krauss, T. D.; Miller, B. L. ACS nano 2009, 3, 2265-2273.
    10. Wu, Y.; Li, Y.; Ong, B. S. Journal of the American Chemical Society 2007, 129, 1862-1863.
    11. Cai, W.; Tang, X.; Sun, B.; Yang, L. Nanoscale 2014, 6, 7954-7958.
    12. Wu, J.; Yang, H. Accounts of chemical research 2013, 46, 1848-1857.
    13. Zhang, H.; Jin, M.; Xia, Y. Chemical Society Reviews 2012, 41, 8035-8049.
    14. Wu, Z.; Yang, S.; Wu, W. Nanoscale 2016, 8, 1237-1259.
    15. Tran, T. T.; Lu, X. The Journal of Physical Chemistry C 2011, 115, 3638-3645.
    16. Jing, H.; Zhang, Q.; Large, N.; Yu, C.; Blom, D. A.; Nordlander, P.; Wang, H. Nano letters 2014, 14, 3674-3682.
    17. Feng, Y.; Burkett, S. L. Computational Materials Science 2015, 97, 1-5.
    18. Zhu, C.; Meng, G.; Huang, Q.; Huang, Z. Journal of hazardous materials 2012, 211, 389-395.
    19. McLellan, J. M.; Li, Z.-Y.; Siekkinen, A. R.; Xia, Y. Nano letters 2007, 7, 1013-1017.
    20. Shen, X. S.; Wang, G. Z.; Hong, X.; Zhu, W. Physical Chemistry Chemical Physics 2009, 11, 7450-7454.
    21. Liu, Y.-J.; Zhang, Z.-Y.; Zhao, Q.; Dluhy, R.; Zhao, Y.-P. The Journal of Physical Chemistry C 2009, 113, 9664-9669.
    22. Zhang, Q.; Moran, C. H.; Xia, X.; Rycenga, M.; Li, N.; Xia, Y. Langmuir 2012, 28, 9047-9054.
    23. Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y. Chemistry-A European Journal 2005, 11, 454-463.
    24. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S. MRS bulletin 2005, 30, 368-375.
    25. Cao, M.; Wang, M.; Gu, N. The Journal of Physical Chemistry C 2009, 113, 1217-1221.
    26. Zeng, J.; Zhang, Q.; Chen, J.; Xia, Y. Nano letters 2009, 10, 30-35.
    27. Sun, Y.; Xia, Y. Advanced Materials 2003, 15, 695-699.
    28. Liu, L.; Yoo, S.-H.; Park, S. Chemistry of Materials 2010, 22, 2681-2684.
    29. Scaiano, J. C.; Stamplecoskie, K. G.; Hallett-Tapley, G. L. Chemical Communications 2012, 48, 4798-4808.
    30. Islam, M. T.; Saenz-Arana, R.; Wang, H.; Bernal, R.; Noveron, J. C. New Journal of Chemistry 2018, 42, 6472-6478.
    31. Pal, S.; De, G. Chemistry of materials 2005, 17, 6161-6166.
    32. Kim, K.; Kim, K. L.; Shin, K. S. The Journal of Physical Chemistry C 2011, 115, 14844-14851.
    33. Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. Journal of Raman Spectroscopy 2008, 39, 1679-1687.
    34. Wei, H.; Abtahi, S. M. H.; Vikesland, P. J. Environmental Science: Nano 2015, 2, 120-135.
    35. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chemical Physics Letters 1974, 26, 163-166.
    36. Jeanmaire, D. L.; Van Duyne, R. P. Journal of electroanalytical chemistry and interfacial electrochemistry 1977, 84, 1-20.
    37. Xu, H.; Aizpurua, J.; Käll, M.; Apell, P. Physical Review E 2000, 62, 4318.
    38. Bantz, K. C.; Meyer, A. F.; Wittenberg, N. J.; Im, H.; Kurtuluş, Ö.; Lee, S. H.; Lindquist, N. C.; Oh, S.-H.; Haynes, C. L. Physical Chemistry Chemical Physics 2011, 13, 11551-11567.
    39. Shaban, M.; Galaly, A. Scientific Reports 2016, 6, 25307.
    40. Doering, W. E.; Nie, S. The Journal of Physical Chemistry B 2002, 106, 311-317.
    41. Wu, D.-Y.; Zhao, L.-B.; Liu, X.-M.; Huang, R.; Huang, Y.-F.; Ren, B.; Tian, Z.-Q. Chemical communications 2011, 47, 2520-2522.
    42. Moskovits, M. Reviews of modern physics 1985, 57, 783.
    43. García-Vidal, F. J.; Pendry, J. Physical Review Letters 1996, 77, 1163.
    44. Moskovits, M. The Journal of Chemical Physics 1978, 69, 4159-4161.
    45. Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzán, L. M.; Pérez-Juste, J.; Pastoriza-Santos, I. Langmuir 2013, 29, 15076-15082.
    46. Yang, Y.; Liu, J.; Fu, Z.-W.; Qin, D. Journal of the American Chemical Society 2014, 136, 8153-8156.
    47. Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Chemical Reviews 2011, 111, 3736-3827.
    48. Fan, M.; Lai, F.-J.; Chou, H.-L.; Lu, W.-T.; Hwang, B.-J.; Brolo, A. G. Chemical Science 2013, 4, 509-515.
    49. Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. Advanced Materials 2013, 25, 6313-6333.
    50. McEachran, M.; Keogh, D.; Pietrobon, B.; Cathcart, N.; Gourevich, I.; Coombs, N.; Kitaev, V. Journal of the American Chemical Society 2011, 133, 8066-8069.
    51. Murshid, N.; Gourevich, I.; Coombs, N.; Kitaev, V. Chemical Communications 2013, 49, 11355-11357.
    52. Liu, H.; Liu, T.; Zhang, L.; Han, L.; Gao, C.; Yin, Y. Advanced Functional Materials 2015, 25, 5435-5443.
    53. Rodríguez-González, B.; Burrows, A.; Watanabe, M.; Kiely, C. J.; Marzán, L. M. L. Journal of Materials Chemistry 2005, 15, 1755-1759.
    54. Aherne, D.; Gara, M.; Kelly, J. M.; Gun'ko, Y. K. Advanced Functional Materials 2010, 20, 1329-1338.
    55. Shahjamali, M. M.; Bosman, M.; Cao, S.; Huang, X.; Saadat, S.; Martinsson, E.; Aili, D.; Tay, Y. Y.; Liedberg, B.; Loo, S. C. J. Advanced Functional Materials 2012, 22, 849-854.
    56. Zeng, J.; Ma, Y.; Jeong, U.; Xia, Y. Journal of Materials Chemistry 2010, 20, 2290-2301.
    57. Au, L.; Lu, X.; Xia, Y. Advanced materials 2008, 20, 2517-2522.
    58. Au, L.; Chen, Y.; Zhou, F.; Camargo, P. H.; Lim, B.; Li, Z.-Y.; Ginger, D. S.; Xia, Y. Nano research 2008, 1, 441-449.
    59. Bai, T.; Tan, Y.; Zou, J.; Nie, M.; Guo, Z.; Lu, X.; Gu, N. The Journal of Physical Chemistry C 2015, 119, 28597-28604.
    60. Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzan, L. M.; de Abajo, F. J. G. Chemical Society Reviews 2008, 37, 1792-1805.
    61. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Nature materials 2007, 6, 692.
    62. Seo, D.; Yoo, C. I.; Jung, J.; Song, H. Journal of the American Chemical Society 2008, 130, 2940-2941.
    63. Lim, B.; Kobayashi, H.; Yu, T.; Wang, J.; Kim, M. J.; Li, Z.-Y.; Rycenga, M.; Xia, Y. Journal of the American Chemical Society 2010, 132, 2506-2507.
    64. Lim, B.; Jiang, M.; Camargo, P. H.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. science 2009, 324, 1302-1305.
    65. Kobayashi, H.; Lim, B.; Wang, J.; Camargo, P. H.; Yu, T.; Kim, M. J.; Xia, Y. Chemical Physics Letters 2010, 494, 249-254.
    66. Wang, C.; Tian, W.; Ding, Y.; Ma, Y.-q.; Wang, Z. L.; Markovic, N. M.; Stamenkovic, V. R.; Daimon, H.; Sun, S. Journal of the American Chemical Society 2010, 132, 6524-6529.
    67. Yu, Y.; Zhang, Q.; Liu, B.; Lee, J. Y. Journal of the American Chemical Society 2010, 132, 18258-18265.
    68. Lu, C.-L.; Prasad, K. S.; Wu, H.-L.; Ho, J.-a. A.; Huang, M. H. Journal of the American Chemical Society 2010, 132, 14546-14553.
    69. Yang, C.-W.; Chanda, K.; Lin, P.-H.; Wang, Y.-N.; Liao, C.-W.; Huang, M. H. Journal of the American Chemical Society 2011, 133, 19993-20000.
    70. Huang, X.; Tang, S.; Zhang, H.; Zhou, Z.; Zheng, N. Journal of the American Chemical Society 2009, 131, 13916-13917.
    71. Zhang, Q.; Large, N.; Wang, H. ACS applied materials & interfaces 2014, 6, 17255-17267.
    72. Xia, X.; Zeng, J.; McDearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Angewandte Chemie 2011, 123, 12750-12754.
    73. Zhang, J.; Winget, S. A.; Wu, Y.; Su, D.; Sun, X.; Xie, Z.-X.; Qin, D. ACS nano 2016, 10, 2607-2616.
    74. Li, H.; Wu, H.; Zhai, Y.; Xu, X.; Jin, Y. ACS Catalysis 2013, 3, 2045-2051.
    75. Wang, Q.; Zhao, Z.; Jia, Y.; Wang, M.; Qi, W.; Pang, Y.; Yi, J.; Zhang, Y.; Li, Z.; Zhang, Z. ACS applied materials & interfaces 2017, 9, 36817-36827.
    76. DeSantis, C. J.; Peverly, A. A.; Peters, D. G.; Skrabalak, S. E. Nano letters 2011, 11, 2164-2168.
    77. Gan, L.; Heggen, M.; Cui, C.; Strasser, P. ACS catalysis 2015, 6, 692-695.
    78. Ahn, J.; Wang, D.; Ding, Y.; Zhang, J.; Qin, D. ACS nano 2018, 12, 298-307.
    79. Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y. Journal of the American Chemical Society 2011, 133, 6078-6089.
    80. Jin, M.; Zhang, H.; Xie, Z.; Xia, Y. Angewandte Chemie International Edition 2011, 50, 7850-7854.
    81. Jiang, B.; Xu, L.; Chen, W.; Zou, C.; Yang, Y.; Fu, Y.; Huang, S. Nano Research 2017, 10, 3509-3521.
    82. Chiou, J.-R.; Lai, B.-H.; Hsu, K.-C.; Chen, D.-H. Journal of hazardous materials 2013, 248, 394-400.
    83. Zhao, B.; Mele, G.; Pio, I.; Li, J.; Palmisano, L.; Vasapollo, G. Journal of Hazardous Materials 2010, 176, 569-574.
    84. Alshammari, A.; Kalevaru, V. N. Catalytic Application of Nano-Gold Catalysts, InTech: 2016.
    85. Pakiari, A.; Jamshidi, Z. The Journal of Physical Chemistry A 2010, 114, 9212-9221.
    86. Han, Q.; Zhang, C.; Gao, W.; Han, Z.; Liu, T.; Li, C.; Wang, Z.; He, E.; Zheng, H. Sensors and Actuators B: Chemical 2016, 231, 609-614.
    87. Trzeciak, A. M.; Ziółkowski, J. J. Coordination chemistry reviews 2007, 251, 1281-1293.
    88. Moreno-Manas, M.; Pleixats, R. Accounts of Chemical Research 2003, 36, 638-643.
    89. Niu, Y.; Yeung, L. K.; Crooks, R. M. Journal of the American Chemical Society 2001, 123, 6840-6846.
    90. Sun, Y.; Wiley, B.; Li, Z.-Y.; Xia, Y. Journal of the American Chemical Society 2004, 126, 9399-9406.
    91. Kéri, A.; Kálomista, I.; Ungor, D.; Bélteki, Á.; Csapó, E.; Dékány, I.; Prohaska, T.; Galbács, G. Talanta 2018, 179, 193-199.
    92. Cobley, C. M.; Xia, Y. Materials Science and Engineering: R: Reports 2010, 70, 44-62.
    93. Yang, Y.; Zhang, Q.; Fu, Z.-W.; Qin, D. ACS applied materials & interfaces 2014, 6, 3750-3757.
    94. Liu, Y.; Zhou, J.; Wang, B.; Jiang, T.; Ho, H.-P.; Petti, L.; Mormile, P. Physical Chemistry Chemical Physics 2015, 17, 6819-6826.
    95. Jiji, S.; Gopchandran, K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 171, 499-506.
    96. Dai, L.; Song, L.; Huang, Y.; Zhang, L.; Lu, X.; Zhang, J.; Chen, T. Langmuir 2017, 33, 5378-5384.
    97. Sivashanmugan, K.; Lee, H.; Syu, C.-H.; Liu, B. H.-C.; Liao, J.-D. Journal of the Taiwan Institute of Chemical Engineers 2017, 75, 287-291.
    98. Cao, M.; Zhou, L.; Xu, X.; Cheng, S.; Yao, J.-L.; Fan, L.-J. Journal of Materials Chemistry A 2013, 1, 8942-8949.
    99. Ma, T.; Yang, W.; Liu, S.; Zhang, H.; Liang, F. Catalysts 2017, 7, 38.
    100. Li, Y.; Ye, Y.; Fan, Y.; Zhou, J.; Jia, L.; Tang, B.; Wang, X. Crystals 2017, 7, 45.
    101. Najdovski, I.; Selvakannan, P.; O'Mullane, A. P. Rsc Advances 2014, 4, 7207-7215.
    102. Sun, X.; Qin, D. Journal of Materials Chemistry C 2015, 3, 11833-11841.
    103. Arora, N.; Mehta, A.; Mishra, A.; Basu, S. Applied Clay Science 2018, 151, 1-9.
    104. Wu, X.; Qiu, L.; Yang, Z.; Yan, F. Applied Catalysis A: General 2014, 478, 30-37.
    105. Lyu, L.-M.; Kao, Y.-C.; Cullen, D. A.; Sneed, B. T.; Chuang, Y.-C.; Kuo, C.-H. Chemistry of Materials 2017, 29, 5681-5692.
    106. Jin, Z.; Liu, C.; Qi, K.; Cui, X. Scientific reports 2017, 7, 39695.
    107. Zheng, G.; Polavarapu, L.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J. Chemical Communications 2015, 51, 4572-4575.
    108. Zhang, Y.; Liu, S.; Lu, W.; Wang, L.; Tian, J.; Sun, X. Catalysis Science & Technology 2011, 1, 1142-1144.
    109. Tang, X.; Cai, W.; Yang, L.; Liu, J. Nanoscale 2014, 6, 8612-8616.
    110. Zhang, K.; Li, G.; Hu, Y. Nanoscale 2015, 7, 16952-16959.
    111. Li, P.; Ma, B.; Yang, L.; Liu, J. Chemical Communications 2015, 51, 11394-11397.
    112. Zhang, K.; Zhao, J.; Ji, J.; Liu, B. Nanoscale 2016, 8, 7871-7875.
    113. Bao, Z. Y.; Lei, D. Y.; Jiang, R.; Liu, X.; Dai, J.; Wang, J.; Chan, H. L.; Tsang, Y. H. Nanoscale 2014, 6, 9063-9070.
    114. Genç, A.; Patarroyo, J.; Sancho-Parramon, J.; Bastús, N. G.; Puntes, V.; Arbiol, J. Nanophotonics 2017, 6, 193-213.
    115. González, E.; Arbiol, J.; Puntes, V. F. Science 2011, 334, 1377-1380.
    116. Aslam, M.; Fu, L.; Su, M.; Vijayamohanan, K.; Dravid, V. P. Journal of materials Chemistry 2004, 14, 1795-1797.
    117. Lu, N.; Wang, J.; Xie, S.; Brink, J.; McIlwrath, K.; Xia, Y.; Kim, M. J. The Journal of Physical Chemistry C 2014, 118, 28876-28882.
    118. Zhang, G.-R.; Wu, J.; Xu, B.-Q. The Journal of Physical Chemistry C 2012, 116, 20839-20847.
    119. Lee, H.-E.; Yang, K. D.; Yoon, S. M.; Ahn, H.-Y.; Lee, Y. Y.; Chang, H.; Jeong, D. H.; Lee, Y.-S.; Kim, M. Y.; Nam, K. T. ACS nano 2015, 9, 8384-8393.
    120. Xia, X.; Zhang, J.; Lu, N.; Kim, M. J.; Ghale, K.; Xu, Y.; McKenzie, E.; Liu, J.; Ye, H. ACS nano 2015, 9, 9994-10004.
    121. Li, X.; Yang, Y.; Zhou, G.; Han, S.; Wang, W.; Zhang, L.; Chen, W.; Zou, C.; Huang, S. Nanoscale 2013, 5, 4976-4985.
    122. Wu, Y.; Sun, X.; Yang, Y.; Li, J.; Zhang, Y.; Qin, D. Accounts of chemical research 2017, 50, 1774-1784.
    123. Pozun, Z. D.; Rodenbusch, S. E.; Keller, E.; Tran, K.; Tang, W.; Stevenson, K. J.; Henkelman, G. The Journal of Physical Chemistry C 2013, 117, 7598-7604.

    下載圖示 校內:2023-07-24公開
    校外:2023-07-24公開
    QR CODE