簡易檢索 / 詳目顯示

研究生: 石祐菘
Shih, You-Song
論文名稱: 三原子分子理想氣體穩態馬赫反射三震波理論多重解分析
A Three-Shock Theoretical Analysis of Multiple Solutions of Steady Mach Reflections in Perfect Triatomic Gases
指導教授: 劉中堅
Liu, Jong-Jian
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 100
中文關鍵詞: 多重解三震波穩態馬赫反射
相關次數: 點閱:55下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文首先應用分離流兩側壓力連續與轉折角相等的條件推導出理想氣體穩態馬赫反射流場在前後分界條件與馮努曼條件下之理論公式。隨後本文有系統地探討三原子分子理想氣體 (r=1.2857) 穩態馬赫反射三震波十階多項式理論之多重解 (m值) 及其對應之壓力-轉折角震波極圖解,並建構出此三原子分子理想氣體穩態馬赫反射流場三震波十階多項式理論解於 (Mo,θ1) 平面上之多重解域圖,其中 Mo為入射震波上游流場馬赫數,θ1 為入射震波下游流場轉折角。論文中有系統地分析此多重解域圖中主要影響m值變化的各不同曲線與討論其對應各不同解域之不同性質的多重解的結果如下: Triple-root (Branch I) 三重根曲線區隔了 m=0與 m=1的解域;Triple-root (Branch II) 三重根曲線在 Mo 小於2.4069時,區隔了 m=3與 m=2的解域,其在 Mo 大於2.4069時則區隔了 m=1與 m=2的解域;Mo 小於2.4069之B1=B2 雙解曲線與 a1=B2雙解迴路曲線之下方迴路區隔了m =1與 m=3的解域;Mo 大於2.4069之a1=B2 雙解迴路曲線則區隔了相同的 m=1的解域 (也就是不影響 m值)。

    none

    摘要………………………………………………………………………I 目錄……………………………………………………………………II 表目錄…………………………………………………………………IV 圖目錄…………………………………………………………………V 符號說明……………………………………………………………VIII 第一章 緒論……………………………………………………………1 第二章 理想氣體穩態馬赫反射流場三震波理論之多重解理論分析………………………………………………………………5 2-1 理想氣體穩態馬赫反射流場現象……………………………………5 2-2 穩態馬赫反射流場之三震波十階多項式理論……………………10 2-3穩態馬赫反射流場壓力、轉折角震波極圖解法……………………13 2-4 特殊條件下理想氣體穩態馬赫反射流場之理論解…………………18 2-4-1前後分界 (Forward/Backward facing) 條件推導………………………18 2-4-2馮努曼 (von Neumann) 條件推導……………………………………27 2-4-3 擬似穩態馬赫反射流場之強弱分界條件推導………………………32 第三章 三原子分子理想氣體 r=1.2857 穩態馬赫反射流場三震波理論之多重解探討…………………………………………42 3-1 Mo=1.2系列討論…………………………………………………43 3-2 Mo=1.5系列討論…………………………………………………46 3-3 Mo=2.0系列討論…………………………………………………48 3-4 Mo=2.2732系列討論……………………………………………51 3-5 Mo=2.3系列討論…………………………………………………58 3-6 Mo=3.0系列討論…………………………………………………65 3-7 Mo=4.0系列討論…………………………………………………72 第四章 三原子分子理想氣體 r=1.2857穩態馬赫反射流場三震波理論多重解域分析與討論……………………………………78 4-1穩態馬赫反射流場三震波理論解於 ( Mo,θ1) 平面之多重解域圖上主要曲線分析………………………………………………………78 4-2穩態馬赫反射流場三震波理論解於 (Mo,θ1) 平面之多重解域圖上 值分析……………………………………………………………83 4-3穩態馬赫反射流場三震波理論解於 ( Mo,θ1 ) 平面之多重解域圖上特殊點分析…………………………………………………………84 第五章 結論……………………………………………………………93 參考文獻………………………………………………………………96 誌謝與簡歷……………………………………………………………100

    Ames Aeronautical Lab. Rep., “AMES Equations, Tables and Charts for Compressible Flow,” NASA, No. 1135, (1953).
    Ben-Dor, G., “Shock Wave Reflection Phenomena,” Springer-Verlag, New York, (1991).
    Ben-Dor, G. and Takayama, K., “The Phenomena of Shock Wave Reflection-A Review of Unsolved Problems and Future Research needs,” Shock Waves, Vol. 2, 211-223, (1992).
    Ben-Dor, G., “Reconsideration of Oblique Shock Wave Reflections in Steady Flows. Part 1. Experimental Investigation,” J. Fluid Mech., Vol. 301, 19-35, (1995).
    Eggink, H., “Uber Verdichtungatosse Bei Abgeloster Stromung ,” Zentralstelle Wissenschaftliche Berichte (Z.W.B.) 1850, Aachen, (1943).
    Griffith, W.C., “Shock Waves,” J. Fluid Mech., Vol. 106, 81-101, (1981).
    Henderson, L. F., “On the Confluence of Three Shock Waves in a Perfect Gas, ” Aero. Quart., 15, 181-197, (1964).
    Henderson, L. F. and Lozzi, A., “Further Experiments on Transition to Mach Reflextion,” J. Fluid Mech., Vol. 94, 541-560, (1979).
    Hornung, H., “Regular and Mach Reflection of Shock Waves,” Ann. Rev. Fluid Mech, 18, 33-58, (1986).
    Henderson, L. F., “Regions and Boundaries for Diffracting Shock Wave Systems,” Z. Angew, Vol 67, 1-14, (1987).
    Ivanov, M.S., Vandromme, D., Fomin, V.M., Kudryavtsev, A.N., Hadjadj, A., Khotyanovsky, D.V., “Transition between Regular and Mach Reflection of Shock Waves: New Numerical and Experimental Results” Shock Waves, Vol. 11, 199-207, (2001).
    Kudryavtsev, A.N., Khotyanovsky, D.V., Ivanov, M.S., Hadjadj, A., Vandromme, D., “Numerical Investigations of Transition between Regular and Mach Reflections Caused by Free-Stream Disturbances” Shock Waves, 157-165, (2002).
    Liu, J.J., “Sound Wave Structures Downstream of Pseudo-Steady Weak and Strong Mach Reflections,” J. Fluid Mech., Vol. 324, 309-332, (1996).
    Li, H., Chpoun, A. and Ben-Dor, G., “Analytical and Experimental Investigations of the Reflection of Asymmetric Shock Waves in Steady Flows,” J. Fluid Mech., Vol. 399, 25-43, (1999).
    Liu, J.J., “A one-dimensional stream-tube interpretation of Liu’s revised three-shock theory for pseudo-steady Mach reflections,” The 23 rd International symposium on shock Wave, Fort Worth, Texas. USA, (2001).
    Liu, J.J., Chuang, C.C., Lee, Y.C., “On Multiply Possible Solutions of the Confluence of Three Shock Waves in Steady Perfect Gas,” The 26th Nat’l Conference on Theoretical and Applied Mechanics, Hu-Wei, Taiwan (2002).
    Liu, J.J., Shih, M.C., Yang, Y.Q., Tseng K.Y., “Preliminary Regimes of Multiplicity of Three-Shock Theoretical Solutions of Steady Mach Reflections in Perfect Triatomic Gases,” The 20th Nat’l Conference on Mechanical Engineering, 427-434, (2003).
    Liu, J.J. and Shih, M.C., “Preliminary Regimes of Multiplicity of Three-Shock Theoretical Solutions of Steady Mach Reflections in Perfect Diatomic Gases,” The 27th Nat’l Conference on Theoretical and Applied Mechanics, 719-727, (2003).
    Liu, J.J. and Chung, K.M., “An Experimental and Theoretical Study on Properties of Induced Oblique Waves of Weak Supersonically Flying Straight Wedges,” The 27th Nat’l Conference on Theoretical and Applied Mechanics, 835-843, (2003).
    Liu, J.J., “A Map of Multiplicity of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections in Diatomic Gases” The 5th International Workshop on Shock/Vortex Interactions, Kaohsiung, Taiwan, 120-127, (2003a).
    Liu, J.J., “Multiply Possible Three-Shock Theoretical Solutions of Steady Mach Reflections in Triatomic Perfect-Gases” The 5th International Workshop on Shock/Vortex Interactions, Kaohsiung, Taiwan, 105-111, (2003b).
    Liu, J.J., “Theoretical Expressions for Limiting Conditions Separating Different Regimes of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections,” The 28th Nat’l Conference on Theoretical and Applied Mechanics, (2004).
    Mach, E., “Uber einige mechanische Wirkungen des electrischen Funkens, ” Akademie der Wissenschaften Wien, Vol. 77, No. II, 819-838, (1878).
    Mathematica,Wolfram Research Asia Ltd. Oak Ochanomizu Building 5F 3-8 Kanda Ogawa-machi Chiyoda-ku, Tokyo 101-0052 JAPAN, (1999).
    Neumann, J. von, “Oblique Reflection of Shocks,” Explos. Res. Rep. 12, Navy Dept., Bureau of Ordinance, Washington, DC. (1943).
    Neumann, J. von, “On Refraction, Interaction and Reflection of Shock Waves,” NAVORD Rep. 203-45, Navy Dept., Bureau of Ordinance, Washington, DC. (1945).
    Wuest, W., “Zur Theorie des gegabelten Verdichtungatosse,” Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 28, No. 3, 73-80, (1948).
    Wecken, F., “Grenzlagen gegabelten Verdichtungatosse,” Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 29, No. 5, 147-155, (1949).
    李玉成,「多原子分子氣體穩態三震波匯流現象之多重解理論分析:SF6」,國立成功大學工程科學系碩士論文,台南 (2003)。
    莊俊忠,「馬赫反射現象之理論探討」,國立成功大學工程科學系碩士論文,台南 (2002)。

    下載圖示 校內:立即公開
    校外:2004-06-25公開
    QR CODE