簡易檢索 / 詳目顯示

研究生: 蘇莞庭
Su, Wan-Ting
論文名稱: 應用鐵系環境資材催化氧化MTBE之研究
Application of environmental iron-based material induced oxidations for treating MTBE
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 167
中文關鍵詞: 對氯苯甲酸(pCBA)化學探針化學氧化法MTBE (甲基第三丁基醚)
外文關鍵詞: p-chlorobenzoic acid (pCBA), probe compound, chemical oxidation, MTBE
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,土壤及地下水有機污染事件層出不窮,又以油品污染為大宗,其中MTBE具有高水溶性極低土壤吸附性,容易隨著地下水傳輸而擴大污染範圍。為有效降低污染影響,必須針對影響標的提出整治方針,土壤及地下水整治技術中,現地化學氧化法可處理地表下污染區域而不受地面結構物之干擾,能節省復育時程及開挖或抽取後處理之成本,相較於其他整治技術較為有效且快速。
    本研究以過氧化氫及過硫酸鈉作為氧化劑,利用不同煉鋼爐碴摻配成鐵系環境資材進行催化,藉以產生高氧化電位之自由基•OH及•SO4-,應用於去除土壤及地下水中有機污染物。由於自由基具反應活性大、存在時間短、濃度低等特性,一般需透過間接量測求出自由基的釋出率。本研究使用之化學探針pCBA同時對•OH及•SO4-有高反應速率,然而本研究選用之催化材使反應處於鹼性環境將影響pCBA測定,實驗透過修正移動相磷酸鹽緩衝溶液濃度為50 mM與有機溶劑成分為乙腈加1%冰醋酸可使pCBA量測之適用pH範圍廣泛。接續以鐵系環境資材催化過氧化氫及過硫酸鈉並以MTBE作為標的瞭解本系統去除污染物的能力。研究顯示鐵系環境資材催化過氧化氫進行類芬頓反應,因反應環境為高鹼雖不利於過氧化氫催化氧化,然而相較於試藥級鐵氧化物,鐵系環境資材具有多孔性質,且高溫產出過程可能使其具有較多的活化位置。另外,添加鐵系環境資材有助於進行異相催化,提升MTBE去除率。以過硫酸鈉為氧化劑,有利於鐵系環境資材進行催化反應,其中鐵系環境資材A催化過硫酸鈉有最佳的MTBE去除效果,反應24小時可將10 mg/L的MTBE完全去除。
    過硫酸鹽反應進行擬一階反應進行模擬,發現藉由瞭解鐵的型態及pH值之反應速率常數可推估鐵系環境資材催化過硫酸鈉對去除污染物之反應速率。最後,研究利用化學探針降解率及MTBE去除率進行線性迴歸,發現兩者屬於高度正相關,並歸納出氧化活性推估至污染物降解之關聯性,期能藉由化學探針於整治污染物前先行篩選出具有催化過氧化氫及過硫酸鹽潛力之環境資材。

    Chemical oxidation is a soil and groundwater remediation technology. It may treat subsurface contaminated area without interference of the structure, and is more effective and fast comparing to other remediation technologies. In this study, environmental iron-based materials which were mixed by steel slags will catalyze the H2O2 and Na2S2O8 decomposition, forming hydroxyl radicals (•OH) and sulfate radicals(•SO4-) with high oxidation capacity to destroy the organic pollutants. The pCBA was used as a chemical probe compound. Monitoring the change in pCBA removal rate provides an indirect measurement of the oxidation activity. MTBE was used as the target pollutant to investigate its relationship between the oxidation activity and MTBE removal efficiency.
    High pH environment will affect the detection of pCBA probe compound. However, it can be solved by the correction of mobile phase. In the catalytic oxidation reaction, the catalytic ability of environmental iron-based materials is greater than pure iron oxides because of their porous and greater activation position. Persulfate oxidation systems increased the oxidation activity and MTBE removal rate under wider pH range when compared to hydrogen peroxide oxidation systems. Using environmental iron-based material A to induce Na2S2O8 results in having the best MTBE removal efficiency, it can degrade 10 mg/L MTBE completely after reaction in 24 hours. In this study, pCBA removal rate and MTBE removal rate was positively correlated, and these chemical probes can be used to assess pollutant removal efficiency.

    摘 要 I SUMMARY III 誌謝 VI 目 錄 VIII 表目錄 XII 圖目錄 XIV 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究內容 3 第二章 文獻回顧 5 2-1地下水之油品污染概況 5 2-1-1MTBE概述 6 2-1-2 MTBE相關法規與管制標準 10 2-1-3油品污染場址相關整治技術 12 2-2化學氧化技術及其在地下水污染整治之應用 19 2-2-1氧化劑種類 20 2-2-2類芬頓(Fenton-like)氧化原理與應用 23 2-2-3過硫酸鹽氧化原理與應用 33 2-3-4類芬頓及過硫酸鹽反應之影響因子 40 2-3煉鋼爐碴之基本特性及應用 46 2-3-1煉鋼爐碴之產出及特性 46 2-3-2煉鋼爐碴之應用現況 52 2-4自由基量測方法 56 2-4-1電子自旋共振法(Electron spin resonance,ESR) 56 2-4-2化學發光法(Chemilumin-escence,CL)58 2-4-3化學探針法(Probe-compound) 58 2-5 小結 61 第三章 研究材料、設備與方法 63 3-1 研究架構與流程 63 3-2研究材料與分析方法 66 3-2-1 研究材料 66 3-2-2 實驗設備 67 3-3研究分析方法 69 3-3-1鐵系環境資材相關分析 69 3-3-2氧化活性量測 73 3-3-3 MTBE含量分析 74 3-4實驗步驟及評估依據 76 3-4-1鐵系環境資材製備及分析 76 3-4-2化學探針測定穩健性評估 77 3-4-3氧化活性評估 78 3-4-4 MTBE降解實驗 79 第四章 結果與討論 81 4-1鐵系環境資材種類及基本特性 81 4-1-1物化特性 81 4-1-2微觀特性分析 86 4-1-3 小結 89 4-2化學探針測定穩健性之探討 90 4-2-1 pH之影響 90 4-2-2緩衝溶液濃度之影響 92 4-2-3鐵氧化物對穩健性之驗證 95 4-2-4 小結 96 4-3鐵系環境資材催化氧化劑之活性探討 98 4-3-1空白吸附/氧化實驗 98 4-3-2鐵系環境資材催化過氧化氫之氧化活性 101 4-3-3鐵系環境資材催化過硫酸鈉之氧化活性 105 4-3-4高鹼條件下鐵氧化物之氧化活性 111 4-3-5小結 113 4-4鐵系環境資材應用於化學氧化法處理MTBE 115 4-4-1空白吸附/氧化實驗 115 4-4-2鐵氧化物於不同pH值下催化氧化劑處理MTBE 118 4-4-3鐵系環境資材催化過氧化氫處理MTBE 127 4-4-4鐵系環境資材催化過硫酸鈉處理MTBE 131 4-4-5小結 136 4-5反應動力解析 137 4-5-1擬一階反應動力模擬137 4-5-1氧化活性與污染物降解之迴歸分析 145 第五章 結論與建議 152 5-1結論 152 5-2建議 154 參考文獻 155

    Acero, J.L., Haderlein, S.B., Schmidt, T.C., Suter, M.J.F., von Gunten, U. “MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation.” Environmental Science & Technology 35, 4252-4259. (2001)
    NSA. “A Guide for the Use of Steel Slag in Agriculture and for Reclamation of Acid Lands.” National Slag Association (NSA). (2011)
    Belpoggi, F., Soffritti, M., Maltoni, C. “Methyl-tertiary-butyl ether (MTBE) - a gasoline additive - causes testicular and lympho haematopoietic cancers in rats.” Toxicology and Industrial Health 11, 119-149. (1995)
    Belpoggi, F., Soffritti, M., Maltoni, C. “Pathological characterization of testicular tumours and lymphomas-leukaemias, and of their precursors observed in Sprague-Dawley rats exposed to methyl-tertiarybutyl-ether (MTBE).” European Journal of Oncology 3, 201-206. (1998)
    Bird, M.G., Burleigh-Flayer, H.D., Chun, J.S., Douglas, J.F., Kneiss, J.J., Andrews, L.S. “Oncogenicity studies of inhaled Methyl tertiary-butyl ether (MTBE) in CD-1 mice and F-344 rats.” Journal of Applied Toxicology 17, S45-S55. (1997)
    Blackburn, A.C., Doe, W.F., Buffinton, G.D. “Salicylate hydroxylation as an indicator of hydroxyl radical generation in dextran sulfate-induced colitis.” Free Radical Biology and Medicine 25, 305-313. (1998)
    Blanco, I., Molle, P., Saenz de Miera, L.E., Ansola, G. “Basic oxygen furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands.” Water Research 89, 355-365. (2016)
    Block, P.A., Brown, R.A., Robinson, D., 2004. Novel activation technologies for sodium persulfate in situ chemical oxidation. Proceedings of the Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds. Columbus, OH: Battelle Press.
    Brown, R. A., Robinson, D., Skladany, G., & Loeper, J. “Response to naturally occurring organic material permanganate - GetInfo (International conference; 8th, Contaminated soil).” (2003)
    Burbano, A.A., Dionysiou, D.D., Suidan, M.T., Richardson, T.L. “Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent.” Water Research 39, 107-118. (2005)
    Cao, J., Zhang, W.-X., Brown, D.G., Sethi, D. “Oxidation of lindane with Fe(II)-activated sodium persulfate.” Environmental Engineering Science 25, 221-228. (2008)
    Chen, K.F., Kao, C.M., Wu, L.C., Surampalli, R.Y., Liang, S.H. “Methyl tert-butyl ether (MTBE) degradation by ferrous ion-activated persulfate oxidation: feasibility and kinetics studies.” Water Environment Research 81, 687-694. (2009)
    Chen, P.-H., Watts, R.J. “Determination of rates of hydroxyl radical generation in mineral-catalyzed Fenton-like oxidation.” Journal of the Chinese Institute of Environmental Engineering 10, 201-208. (2000)
    Chiou, C.-S., Chen, Y.-H., Chang, C.-Y., Shie, J.-L., Liu, C.-C., Chang, C.-T. “Photochemical oxidation of polyethylene glycol in aqueous solution by UV/H2O2 with steel waste.” Journal of the Chinese Institute of Chemical Engineers 37, 321-328. (2006)
    Chiou, C.S., Chang, C.F., Chang, C.T., Shie, J.L., Chen, Y.H. “Mineralization of Reactive Black 5 in aqueous solution by basic oxygen furnace slag in the presence of hydrogen peroxide.” Chemosphere 62, 788-795. (2006)
    Davidson, J.M., Creek, D.N. “Using the gasoline additive MTBE in forensic environmental investigations.” Environmental Forensics 1, 31-36. (2010)
    Deng, D., Peng, L., Guan, M., Kang, Y. “Impact of activation methods on persulfate oxidation of methyl tert-butyl ether.” Journal of Hazardous Materials 264, 521-528. (2014)
    Drizo, A., Forget, C., Chapuis, R.P., Comeau, Y. “Phosphorus removal by electric arc furnace steel slag and serpentinite.” Water Research 40, 1547-1554. (2006)
    Elovitz, M.S., von Gunten, U. “Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept.” Ozone: Science & Engineering 21, 239-260. (1999)
    Fang, G.-D., Dionysiou, D.D., Al-Abed, S.R., Zhou, D.-M. “Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs.” Applied Catalysis B: Environmental 129, 325-332. (2013)
    Fenton, H.J.H. “LXXIII.—Oxidation of tartaric acid in presence of iron.” Journal of the Chemical Society, Transactions 65, 899-910. (1987)
    Forsey, S.P. “In Situ Chemical Oxidation of Creosote/Coal Tar Residuals: Experimental and Numerical Investigation.” University of Waterloo, Waterloo Ontario, Canada. PhD thesis (2004)
    Hsueh, C.-L., Huang, Y.-H., Wang, C.-C., Chen, C.-Y. “Photoassisted fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH.” Journal of Molecular Catalysis A: Chemical 245, 78-86. (2006)
    Huang, K.-C., Couttenye, R.A., Hoag, G.E. “Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE).” Chemosphere 49, 413-420. (2002)
    Huang, K.C., Zhao, Z., Hoag, G.E., Dahmani, A., Block, P.A. “Degradation of volatile organic compounds with thermally activated persulfate oxidation.” Chemosphere 61, 551-560.(2005)
    Huber, M.M., Canonica, S., Park, G.-Y., von Gunten, U. “Oxidation of pharmaceuticals during ozonation and advanced oxidation processes.” Environmental Science & Technology 37, 1016-1024. (2003)
    Hung, H.W., Lin, T.F. “Adsorption of MTBE from contaminated water by carbonaceous resins and mordenite zeolite.” Journal of Hazardous Materials 135, 210-217. (2006)
    Ishibashi, K.-I., Fujishima, A., Watanabe, T., Hashimoto, K. “Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique.” Electrochemistry Communications 2, 207-210. (2000)
    ITRC., “Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater.” Interstate Technology Regulation Cooperation (ITRC), second ed., Washington, DC. (2005)
    Ji, Y., Dong, C., Kong, D., Lu, J., Zhou, Q. “Heat-activated persulfate oxidation of atrazine: implications for remediation of groundwater contaminated by herbicides.” Chemical Engineering Journal 263, 45-54. (2015)
    Ji, Y., Ferronato, C., Salvador, A., Yang, X., Chovelon, J.M. “Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics.” The Science of the Total Environment 472, 800-808. (2014)
    Jousset, A., Lara, E., Nikolausz, M., Harms, H., Chatzinotas, A. “Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil.” The Science of the Total Environment 408, 1221-1225. (2010)
    Kober, R., Schlicker, O., Ebert, M., Dahmke, A. “Degradation of chlorinated ethylenes by Fe0: inhibition processes and mineral precipitation.” Environmental Geology 41, 644-652. (2002)
    Kakarla, P.K.C., Watts, R.J. “Depth of Fenton-like oxidation in remediation of surface soil.” Journal of Environmental Engineering 123, 11-17. (1997)
    Kavitha, V., Palanivelu, K. “Degradation of 2-chlorophenol by Fenton and photo-Fenton processes—A comparative study.” Journal of Environmental Science and Health 38, 1215-1231. (2003)
    Kavitha, V., Palanivelu, K., “The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol.” Chemosphere 55, 1235-1243. (2004)
    Kim, J.H., Elovitz, M.S., von Gunten, U., Shukairy, H.M., Marinas, B.J. “Modeling cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water.” Water Research 41, 467-475. (2007)
    Kwon, B.G., Lee, D.S., Kang, N., Yoon, J. “Characteristics of p-chlorophenol oxidation by Fenton's reagent.” Water Research 33, 2110-2118. (1999)
    Lee, J.M., Kim, J.H., Chang, Y.Y., Chang, Y.S. “Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins.” Journal of Hazardous Materials 163, 222-230.(2009)
    Li, B., Zhu, J. “Removal of p-chloronitrobenzene from groundwater: effectiveness and degradation mechanism of a heterogeneous nanoparticulate zero-valent iron (NZVI)-induced Fenton process.” Chemical Engineering Journal 255, 225-232. (2014)
    Liang, C., Guo, Y.-Y. “Remediation of diesel-contaminated soils using persulfate under alkaline condition.” Water, Air, & Soil Pollution 223, 4605-4614. (2012)
    Liang, C., Lei, J.H. “Identification of active radical species in alkaline persulfate oxidation.” Water Environment Research 87, 656-659. (2015)
    Liang, C., Su, H.-W. “Identification of sulfate and hydroxyl radicals in thermally activated persulfate.” Industrial & Engineering Chemistry Research 48, 5558-5562. (2009)
    Liang, C., Wang, Z.S., Mohanty, N. “Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20°C.” The Science of the Total Environment 370, 271-277. (2006)
    Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L. “Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries.” Soil and Sediment Contamination 12, 207-228. (2003)
    Liu, H., Bruton, T.A., Doyle, F.M., Sedlak, D.L. “In situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe(III)-and Mn(IV)-containing oxides and aquifer materials.” Environmental Science & Technology 48, 10330-10336. (2014)
    Long, A., Lei, Y., Zhang, H. “Degradation of toluene by a selective ferrous ion activated persulfate oxidation process.” Industrial & Engineering Chemistry Research 53, 1033-1039. (2014)
    Matta, R., Hanna, K., Kone, T., Chiron, S. “Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH.” Chemical Engineering Journal 144, 453-458. (2008)
    Miraglio, M.A. “Base-activated persulfate treatment of contaminated soils with pH drift from alkaline to circumneutral.” Department of Civil and Environmental Engineering. (2009)
    Pignatello, J.J. “Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide.” Environmental Science & Technology 26, 944-951. (1992)
    Rivas, F.J., Beltrán, F.J., Frades, J., Buxeda, P. "Oxidation of p-hydroxybenzoic acid by Fenton's reagent.” Water Research 35, 387-396. (2001)
    Saarinen, L., Hakkola, M., Pekari, K., Lappalainen, K., Aitio, A. “Exposure of gasoline road-tanker drivers to methyl tert-butyl ether and methyl tert-amyl ether.” International Archives of Occupational and Environmental Health 71, 143-147. (1998)
    Satapanajaru, T., Yoo-iam, M., Bongprom, P., Pengthamkeerati, P. “Decolorization of Reactive Black 5 by persulfate oxidation activated by ferrous ion and its optimization.” Desalination and Water Treatment 56, 121-135. (2014)
    Seagren, E.A., Becker, J.G. “Review of natural attenuation of BTEX and MTBE in groundwater.” Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 6, 156-172. (2002)
    Siegrist, R.L., Crimi, M., Simpkin, T.J. “In Situ Chemical Oxidation for Groundwater Remediation.” Springer. New York, NY. (2011)
    Tai, C., Peng, J.-F., Liu, J.-F., Jiang, G.-B., Zou, H. “Determination of hydroxyl radicals in advanced oxidation processes with dimethyl sulfoxide trapping and liquid chromatography.” Analytica Chimica Acta 527, 73-80. (2004)
    Tang, X., Hashmi, M.Z., Zeng, B., Yang, J., Shen, C. “Application of iron-activated persulfate oxidation for the degradation of PCBs in soil.” Chemical Engineering Journal 279, 673-680. (2015)
    Taubert, D. “Reaction rate constants of superoxide scavenging by plant antioxidants.” Free Radical Biology and Medicine 35, 1599-1607. (2003)
    Thiruvenkatachari, R., Ouk Kwon, T., Shik Moon, I. “Degradation of phthalic acids and benzoic acid from terephthalic acid wastewater by advanced oxidation processes.” Journal of Environmental Science and Health 41, 1685-1697. (2006)
    Tsai, T.T., Kao, C.M. “Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag.” Journal of Hazardous Materials 170, 466-472. (2009)
    Tsai, T.T., Kao, C.M., Hong, A. “Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidation-a laboratory feasibility study.” Journal of Hazardous Materials 171, 571-576. (2009)
    Tsai, T.T., Kao, C.M., Surampalli, R.Y., Weng, C.H., Liang, S.H. “Treatment of TCE-contaminated groundwater using Fenton-like oxidation activated with basic oxygen furnace slag.” Journal of Environmental Engineering 136, 288-294. (2010)
    Tsai, T.T., Kao, C.M., Wang, J.Y. “Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.” Chemosphere 83, 687-692. (2011)
    USEPA. “Permeable reactive barrier technologies for contaminant remediation.” United States Environmental Protection Agency (USEPA). (1998)
    USEPA. “How to evaluate alternative cleanup technologies for underground storage tank sites.” United States Environmental Protection Agency (USEPA). (2004)
    USEPA. “In situ chemical oxidation [overviews & factsheets].” United States Environmental Protection Agency (USEPA). (2014)
    Ventura, A., Jacquet, G., Bermond, A., Camel, V. “Electrochemical generation of the Fenton's reagent: application to atrazine degradation.” Water Research 36, 3517-3522. (2002)
    Vicente, F., Santos, A., Romero, A., Rodriguez, S. “Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method.” Chemical Engineering Journal 170, 127-135. (2011)
    Wang, C.-Y., Rabani, J., Bahnemann, D.W., Dohrmann, J.K. “Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts.” Journal of Photochemistry and Photobiology 148, 169-176. (2002)
    Wang, N., Zheng, T., Zhang, G., Wang, P. “A review on Fenton-like processes for organic wastewater treatment.” Journal of Environmental Chemical Engineering 4, 762-787. (2016)
    Wang, Q., Shao, Y., Gao, N., Chu, W., Deng, J., Shen, X., Lu, X., Zhu, Y., Wei, X. “Degradation of alachlor with zero-valent iron activating persulfate oxidation.” Journal of the Taiwan Institute of Chemical Engineers 63, 379-385. (2016)
    Watts, R.J., Haller, D.R., Jones, A.P., Teel, A.L. “A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton's reactions.” Journal of Hazardous Materials 76, 73-89. (2000)
    Weeks, K.R., Bruell, C.J., Mohanty, N.R. “Use of Fenton's reagent for the degradation of TCE in aqueous systems and soil slurries.” Journal of Soil Contamination 9, 331-345. (2000)
    Weir, B.A., Sundstrom, D.W., Klei, H.E. “Destruction of benzene by ultraviolet light-catalyzed oxidation with hydrogen peroxide.” Hazardous Waste and Hazardous Materials 4, 165-176. (1987)
    Woo, N.C., Hyun, S.G., Park, W.W., Lee, E.S., Schwartz, F.W. “Characteristics of permanganate oxidation of TCE at low reagent concentrations.” Environmental Technology 30, 1337-1342. (2009)
    Wu, D., Chen, Y., Zhang, Y., Feng, Y., Shih, K. “Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS2) induced Fenton-like reactions.” Separation and Purification Technology 154, 60-67. (2015)
    Yaping, Z., Wenli, Y., Dapu, W., Xiaofeng, L., Tianxi, H. “Chemiluminescence determination of free radical scavenging abilities of ‘tea pigments’ and comparison with ‘tea polyphenols’.” Food Chemistry 80, 115-118. (2003)
    Yasuhito, M., Yoshio, S., Satoru, S., Kumi, O. “Environment improvement in the sea bottom by steelmaking slag.” JFE Technical report 13, 41-45. (2009)
    Zhang, A., Wang, N., Zhou, J., Jiang, P., Liu, G. “Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash.” Journal of Hazardous Materials 201-202, 68-73. (2012)
    Zhao, L., Hou, H., Fujii, A., Hosomi, M., Li, F. “Degradation of 1,4-dioxane in water with heat-and Fe(2+)-activated persulfate oxidation.” Environmental Science and Pollution Research International 21, 7457-7465. (2014)
    Zhao, Y.S., Sun, C., Sun, J.Q., Zhou, R. “Kinetic modeling and efficiency of sulfate radical-based oxidation to remove p-nitroaniline from wastewater by persulfate/Fe3O4 nanoparticles process.” Separation and Purification Technology 142, 182-188. (2015)
    Zheng, J., Gao, Z., He, H., Yang, S., Sun, C. “Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.” Chemosphere 150, 40-48. (2016)
    Zimbron, J.A., Reardon, K.F. “Fenton's oxidation of pentachlorophenol.” Water Research 43, 1831-1840. (2009)
    Zimowska, M., Łątka, K., Mucha, D., Gurgul, J., Matachowski, L. “The continuous conversion of ethanol and water mixtures into hydrogen over FexOy/MoO3 catalytic system—XPS and Mössbauer studies.” Journal of Molecular Catalysis A: Chemical 423, 92-104. (2016)
    中國鋼鐵公司,中鋼企業社會責任報告書,2013。
    中國鋼鐵公司,爐石利用推廣手冊, 第四版,中國鋼鐵公司,2003。
    王智緯,好氧降解對地下水中BTEX污染團之影響. 國立交通大學土木工程研究所,碩士論文,2012。
    江奇成,電弧爐煉鋼還原渣與鑄件廢料摻用於混凝土再生材之模式研究,國立台灣科技大學營建工程學系,博士論文,2005。
    行政院勞工委員會,GHS化學品全球調和制度/物質安全資料表,行政院勞工委員會,2016。
    行政院環保署,油品類儲槽系統土壤及地下水污染整治技術選取、系統設計要點與注意事項參考手冊,行政院環保署,2006。
    呂政信,現地透水性反應牆配置對含氯有機溶劑整治效率的影響,國立交通大學土木工程學系,碩士論文,2014。
    李大慶,電弧爐氧化碴砂漿物化特性之研究,國防大學軍事工程研究所,碩士論文,2002。
    李世莉,鐵-氧化鐵核殼奈米粒子的合成及研究,國立交通大學材料科學與工程研究所,碩士論文,2006。
    李文凱,光催化過硫酸鹽氧化水中六種有機污染物之動力研究與模擬,國立成功大學環境工程學系,碩士論文,2012。
    洪采貝,光活化過硫酸鹽與臭氧氧化水中甲基第三丁基迷之動力研究,國立成功大學環境工程學系,碩士論文,2011。
    袁家偉,使用轉爐石提升耐久性瀝青混凝土成效之研究,國立中央大學土木工程研究所,碩士論文,2007。
    張育禎,以加強式過硫酸鹽氧化系統處理受甲基第三丁基醚污染之地下水,國立暨南國際大學土木工程學系,碩士論文,2010。
    梁振儒,淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法,台灣土壤及地下水環境保護協會簡訊. 13-20,2007。
    郭雅鈴,應用監測式自然衰減法整治受石油碳氫化合物污染之地下水,國立中山大學環境工程研究所,碩士論文,2006。
    陳立,電弧爐氧化碴為混凝土骨材之可行性研究,國立中央大學土木工程研究所,博士論文,2003。
    陳呈芳,土壤及地下水污染現地化學氧化整治技術及案例介紹,中興工程顧問股份有限公司,2007。
    陳韋舜,Fenton-like反應中含氯乙烯類污染物與氫氧自由基反應係數之探討,國立屏東科技大學環境工程與科學系,碩士論文,2003。
    黃大衛,轉爐石取代傳統粒料對瀝青混凝土VMA性質影響之研究,國立中央大學土木工程研究所,碩士論文,2008。
    黃毅峰,以新穎之Fenton/過硫酸鹽高級氧化程序降解染料Reactive Black B和雙酚A之研究,國立成功大學化學工程學系,博士論文,2009。
    吳錩翰,鐵系資材誘導類芬頓反應處理持久性有機污染物之研究,國立成功大學環境工程學系,碩士論文,2014。
    林兪嫺,緩釋型類芬頓材應用於處理苯及MTBE之研究,國立成功大學環境工程學系,碩士論文,2015。
    經濟部工業局,鋼鐵業廢棄物資源化案例彙編,經濟部工業局,1996。
    經濟部工業局,電弧爐煉鋼還原渣資源化技術手冊,經濟部工業局,2001。
    蘇茂豐, 陳立,電弧爐煉鋼爐碴之資源化現況及未來展望,工業污染防治, 27-51,2005。

    無法下載圖示 校內:2021-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE