簡易檢索 / 詳目顯示

研究生: 李威杰
Lee, Wei-Chieh
論文名稱: 長期右心室起搏相關的心房心肌病變 - 從臨床實務到動物模型研究
Long-term right ventricular pacing related atrial cardiomyopathy - From clinical practice to animal model
指導教授: 劉秉彥
Liu, Ping-Yen
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 115
中文關鍵詞: 左心房擴大左心房纖維化右心室起搏雙心室同步起搏不同步完全房室傳導阻滯Sirtuin signaling pathwaySIRT1GADD45G
外文關鍵詞: left atrial enlargement, left atrial fibrosis, right ventricular pacing, biventricular pacing, dyssynchrony, complete atrioventricular block, Sirtuin signaling pathway, SIRT1, GADD45G
相關次數: 點閱:33下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口老齡化,症狀性心動過緩的患病率增加,導致心臟節律器的使用增加,雖然在心律過緩治療方面取得長足進步,但臨床研究表明,長期的右心室起搏可能對左心室功能產生不利的影響,並導致左心房擴大,其左心房擴大與心臟衰竭和心房性心動過速的風險增加有關,特別是在完全房室傳導阻滯患者中,其中心房顫動的發病率超過了一般人群,然而長期右心室起搏後心房擴大和結構重構的分子和遺傳機制仍然知之甚少。
    研究首先利用臨床數據觀察了由於長期右心室起搏所引起的心室之間不同步收縮,了解左心房擴大的整體發生率及其導致的併發症,通過臨床資料庫觀察發現,完全房室傳導阻滯患者接受長期右心室起搏,其中20.8%病患產生明顯左心房擴大,而影響長期中風的發生風險。
    利用完全房室傳導阻滯的實驗豬模型,進一步探討長期右心室起搏後引起心房擴大和結構重構的分子和相關基因機制,比較了長期右心室起搏模式和雙心室同步收縮節律器在心房大小和結構重構方面的差異,研究分為三組:對照組、六個月右心室起搏組以及三個月右心室起搏後再進行三個月雙腔同步起搏的組別,六個月後,收集心房組織以檢查不同起搏方式如何影響基因表達和完全房室傳導阻滯豬心房的結構重構,利用基因測序系統地探索對照組與右心室起搏組之間基因表達的差異,進行功能途徑分析,以確定導致心房結構重構的信號途徑,則發現在右心室起搏的豬隻中觀察到左心房增大和新房纖維化的顯著變化,而對Sirtuin信號的負控制和SIRT1基因及蛋白質的表現降低則對左心房纖維化有重要影響,雙腔同步起搏改善心室收縮同步性,並反向調節GADD45G的表現以回饋SIRT1以改善左心房纖維化。
    這項研究通過臨床數據庫分析和完全房室傳導阻斷動物模組研究強調右心室起搏相關的心室不同步收縮所導致的左心房增大和相關纖維化表現,其中發現對於Sirtuin信號的負控制和SIRT1基因及蛋白質的表現降低控制了纖維化,並突顯了右心室起搏所引起的左心房增大和纖維化背後複雜的分子機制。

    The prevalence of symptomatic bradycardia has increased with the aging of the population, resulting in a global rise in the implantation of cardiac pacemakers. The introduction of artificial permanent pacemakers has revolutionized arrhythmia treatment; however, clinical research indicates that prolonged right ventricular (RV) pacing results in a decline in left ventricular function and left atrial (LA) enlargement. A larger atrium is associated with an increased risk of heart failure and atrial tachyarrhythmia, particularly in patients with complete atrioventricular block (CAVB), who are at a higher risk of developing atrial fibrillation (AF) than the general population. Currently, the involved molecular and associated genetic mechanisms cause atrial enlargement and structural remodeling after long-term RV pacing are poorly explored.
    This study utilized clinical data to observe the asynchronous contractions induced by prolonged RV pacing, the overall prevalence of LA enlargement, and its resultant complications. The complications of interventricular dyssynchrony-related LA enlargement and remodeling were observed in a clinical database. Long-term RV pacing cause 20.8% patients with an increase of greater than 20% from the baseline LA diameter. The patients with LA enlargement presented higher incidence of stroke at long-term follow-up period.
    An experimental pig model of AV conduction block was used to explore the atrial remodeling involved molecular and genetic mechanisms following prolonged stimulation of RV pacing. Furthermore, the variations induced in atrial size and structural remodeling by the long-term pacing modes of the RV pacemaker and the biventricular synchronous contraction pacemaker were compared. Three groups were created by building upon clinical research data and employing an experimental pig model of CAVB: a control group, a six-month RV pacing group, and other group subjected to three-month RV pacing followed by three-month bi-ventricular (BiV) synchronous pacing. Atrial tissues were collected after six months to investigate the effect of how different pacing modalities on gene expression and structural remodeling in pig atria with CAVB. The differences of genetic expression between the control and RV pacing groups were systematically explored via next-generation sequencing (NGS). Furthermore, the genes potentially associated with pathological changes in the LA among significantly differentially expressed genes were identified. Enrichment and functional pathway analyses were performed to identify the signaling pathways involved in atrial structural remodeling. Larger LA size and fibrotic change was observed significantly in the RV pacing pig. Negative control of sirtuin signaling pathway and down regulation of SIRT1 have an important impact on LA fibrosis. BiV pacing improved interventricular synchrony and reverse GADD45G to improve LA fibrosis.
    The finding of this study emphasizes RV pacing related interventricular dyssynchrony cause LA enlargement and fibrosis by clinical database and CAVB animal study. Sirtuin signaling pathway and SIRT1 regulate fibrosis and underscore the complex molecular mechanisms driving LA enlargement induced by RV pacing.

    Abstract I 中文摘要 III 誌謝 V Contents VII Table list XI Figure list XIII Abbreviations XV Chapter 1. Introduction 1 1.1 Long-term impact and complications of right ventricular pacing 1 1.2 Possible mechanisms of left atrial enlargement after long-term right ventricular pacing 2 1.3 Right ventricular pacing-induced mechanical dyssynchrony can induce mitral regurgitation and left atrial enlargement 3 Chapter 2. Objective and Specific Aims 5 Chapter 3. Materials and Methods 7 3.1 Clinic study design 7 3.1.1 Patient enrollment and ethical statement 7 3.1.2 Definition and study endpoint 8 3.1.3 Echocardiography assessment 8 3.2 Animal study design 9 3.2.1 Creation of CAVB models post RV septal-dependent pacing and biventricular pacing 9 3.2.2 Pacemaker implantation and achievement of atrioventricular block condition 9 3.2.3 Transthoracic echocardiograph for animal 11 3.2.4 Specimen storage or atrial tissue 11 3.2.5 Masson’s Trichrome Staining 12 3.2.6 Western blotting 13 3.2.7 Next-generation sequencing and quantitative determination of RNA of the lateral wall of LA myocardium 14 3.3 HL-1 cell culture and stretch model 18 3.4 Statistical analyses 19 Chapter 4. Results 20 4.1 Results of the clinical cohort study 20 4.1.1 Baseline characteristics and demographic characteristics of patients with and without significant LA enlargement after RV pacing 20 4.1.2 Initial and following echocardiographic parameters of the patients with and without significant LA enlargement 20 4.1.3 Receiver operating characteristic curves of significant LA enlargement and the duration of RV pacing (years) 21 4.1.4 Incidence of significant LA enlargement and the change in LA diameter during the follow-up period in patients with RV pacing duration of < 3.3 years and ≥ 3.3 years 22 4.1.5 Univariate and multivariate logistic regression analyses of the predictors of significant LA enlargement post RV pacing 22 4.1.6 Clinical outcomes of the patients with and without significant LA enlargement 23 4.1.7 Comparison between the clinical outcomes of patients with and without significant LA enlargement after propensity score matching 23 4.2 Results of the CAVB animal model 24 4.2.1 Change in LA area, volume, and performance 24 4.2.2 Comparative analysis of weight of heart and indexed weight of heart according to BMI 25 4.2.3 Atrial fibrosis developed in the LA myocardium following pacing 25 4.2.4 Increased expression of fibrotic and apoptosis markers in the LA myocardium following pacing 26 4.2.5 Functional enrichment analysis: down regulation of the Sirtuin signaling pathway in the lateral wall of LA myocardium following 6 months of RV pacing compared with that in the sham control 27 4.2.6 Comparison of the expression levels of the fifteen differentially expressed genes in the sirtuin signaling pathway among the three groups 28 4.2.7 Quantitative measurement of RNAs using real-time PCR for the fifteen differentially expressed genes in the sirtuin signaling pathway among the three groups 29 4.2.8 Expression levels of sirtuin subtypes (SIRT1-7) in control and GADD45G knockdown HL-1 cells 30 4.2.9 Decreased expression of SIRT1 and GADD45G protein in the LA myocardium after pacing 30 4.3 Stretching increases the TGF-β levels and decreases the SIRT-1 levels, whereas resveratrol reverses TGF-β expression 31 4.3.1 Effects of mechanical stretch on the SIRT1, TGF-β, and Collagen I expression levels in the HL-1 cells over time 31 4.3.2 Resveratrol mitigates the changes in the SIRT1, TGF-β, and Collagen I expression levels in the HL-1 cells induced by mechanical stretch 32 Chapter 5. Discussion 33 5.1 Increased incidence of stroke is associated with long-term RV pacing-induced LA enlargement and significant MR 33 5.2 Possible mechanisms of LA structural fibrosis and enlargement induced by RV pacing 33 5.3 The role of LA enlargement in cardiovascular risk and its assessment 34 5.4 Post-implant impaired LV performance and development of mitral regurgitation after RV-dependent pacing 35 5.5 The role of SIRT1 and GADD45G in LA fibrosis and enlargement 35 5.6 The Role of SIRT1 in Fibrosis 36 5.7 Managing Long-Term Stroke Risk After RV Pacing-Related interventricular Dyssynchrony 37 Chapter 6. Conclusion 40 Reference 41 Tables 50 Figures 62

    1. Bradshaw PJ, Stobie P, Knuiman MW, et al. Trends in the incidence and prevalence of cardiac pacemaker insertions in an ageing population. Open Heart 2014; 1(1): e000177.
    2. Marini M, Martin M, Saltori M, et al. Pacemaker therapy in very elderly patients: survival and prognostic parameters of single center experience. Journal of geriatric cardiology : JGC 2019; 16(12): 880-4.
    3. Lim WY, Prabhu S, Schilling RJ. Implantable Cardiac Electronic Devices in the Elderly Population. Arrhythmia & electrophysiology review 2019; 8(2): 143-6.
    4. Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021; 42(35): 3427-520.
    5. Hillock RJ, Mond HG. Pacing the right ventricular outflow tract septum: time to embrace the future. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology 2012; 14(1): 28-35.
    6. Chung MK, Patton KK, Lau CP, et al. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart rhythm 2023; 20(9): e17-91.
    7. Cicchitti V, Radico F, Bianco F, et al. Heart failure due to right ventricular apical pacing: the importance of flow patterns. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology 2016; 18(11): 1679-88.
    8. Chen S, Wang Z, Kiuchi MG, et al. Cardiac pacing strategies and post-implantation risk of atrial fibrillation and heart failure events in sinus node dysfunction patients: a collaborative analysis of over 6000 patients. Clin Res Cardiol. 2016; 105(8): 687-98.
    9. Khurshid S, Frankel DS. Pacing-Induced Cardiomyopathy. Cardiac electrophysiology clinics 2021; 13(4): 741-53.
    10. Mannion J, Hong KL, Hennessey A, et al. Optimizing Patient Selection for Physiological Pacing in Bradyarrhythmia: Factors Associated With High Ventricular Pacing Burden. Cardiol Res. 2024; 15(2): 99-107.
    11. Sanchez R, Nadkarni A, Buck B, et al. Incidence of pacing-induced cardiomyopathy in pacemaker-dependent patients is lower with leadless pacemakers compared to transvenous pacemakers. J Cardiovasc Electrophysiol. 2021; 32(2): 477-83.
    12. Lee WC, Fang HY, Chen HC, et al. Post-pacemaker implant QRS duration and heart failure admission in patients with sick sinus syndrome and complete atrioventricular block. ESC heart failure 2019; 6(4): 686-93.
    13. Saunderson CED, Paton MF, Brown LAE, et al. Detrimental Immediate- and Medium-Term Clinical Effects of Right Ventricular Pacing in Patients With Myocardial Fibrosis. Circulation Cardiovascular imaging 2021; 14(5): e012256.
    14. Gavaghan C. Pacemaker Induced Cardiomyopathy: An Overview of Current Literature. Current cardiology reviews 2022; 18(3): e010921196020.
    15. Nielsen JC, Kristensen L, Andersen HR, et al. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome. J Am Coll Cardiol 2003; 42(4): 614-23.
    16. Kristensen L, Nielsen JC, Mortensen PT, et al. Incidence of atrial fibrillation and thromboembolism in a randomised trial of atrial versus dual chamber pacing in 177 patients with sick sinus syndrome. Heart (British Cardiac Society) 2004; 90(6): 661-6.
    17. Lin YS, Guo GB, Chen YL, et al. Atrial size independently correlates with the development of paroxysmal atrial fibrillation in patients with sick sinus syndrome. Chang Gung medical journal 2010; 33(6): 659-67.
    18. Hamatani Y, Ogawa H, Takabayashi K, et al. Left atrial enlargement is an independent predictor of stroke and systemic embolism in patients with non-valvular atrial fibrillation. Sci Rep. 2016; 6: 31042.
    19. Ogata T, Matsuo R, Kiyuna F, et al. Left Atrial Size and Long-Term Risk of Recurrent Stroke After Acute Ischemic Stroke in Patients With Nonvalvular Atrial Fibrillation. J Am Heart Assoc. 2017; 6(8): e006402.
    20. Lin YS, Guo GB, Chen YL, et al. Atrial enlargement in symptomatic heart block patients with preserved left ventricular function: possibly related to atrioventricular dyssynchrony. Int J Cardiol 2011; 148(3): 280-4.
    21. Lin YS, Chang TH, Shi CS, et al. Liver X Receptor/Retinoid X Receptor Pathway Plays a Regulatory Role in Pacing-Induced Cardiomyopathy. J Am Heart Assoc. 2019; 8(1): e009146.
    22. Bombelli M, Facchetti R, Cuspidi C, et al. Prognostic significance of left atrial enlargement in a general population: results of the PAMELA study. Hypertension. 2014; 64(6): 1205-11.
    23. Ahmeti A, Bytyçi FS, Bielecka-Dabrowa A, et al. Prognostic value of left atri¬al volume index in acute coronary syndrome: A systematic review and me¬ta-analysis. Clin Physiol Funct Imaging. 2021; 41(2): 128-35.
    24. Camm CF, Camm AJ. Atrial fibrillation and anticoagulation in hypertrophic cardiomyopathy. Arrhythm Electrophysiol Rev. 2017; 6(2): 63-8.
    25. Ferreira F, Galrinho A, Soares R, et al. Prognostic value of left atrial volume in patients with dilated cardiomyopathy. Rev Port Cardiol. 2013; 32(11): 865-72.
    26. Hoit BD. Left atrial size and function: role in prognosis. J Am Coll Cardiol. 2014; 63(6): 493-505.
    27. Santos AB, Roca GQ, Claggett B, et al. Prognostic Relevance of Left Atrial Dysfunction in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail. 2016; 9(4): e002763.
    28. Yamashita T, Murakawa Y, Ajiki K, et al. Incidence of induced atrial fibrillation/flutter in complete atrioventricular block. A concept of ’atrial-malfunctioning’ atrio-hisian block. Circulation 1997; 95(3): 650-4.
    29. Kannel WB, Wolf PA, Benjamin EJ, et al. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. AmJ Cardiol 1998; 82(8A): 2N–9N.
    30. He S, Fontaine AA, Schwammenthal E, et al. Integrated mechanism for functional mitral regurgitation: leaflet restriction versus coapting force: in vitro studies. Circulation 1997; 96(6): 1826-34.
    31. Otsuji Y, Kumanohoso T, Yoshifuku S, et al. Isolated annular dilation does not usually cause important functional mitral regurgitation: comparison between patients with lone atrial fibrillation and those with idiopathic or ischemic cardiomyopathy. J Am Coll Cardiol 2002; 39(10): 1651-6.
    32. Orlov MV, Gardin JM, Slawsky M, et al. Biventricular pacing improves cardiac function and prevents further left atrial remodeling in patients with symptomatic atrial fibrillation after atrioventricular node ablation. Am Heart J. 2010; 159(2): 264-70.
    33. Kuperstein R, Goldenberg I, Moss AJ, et al. Left atrial volume and the benefit of cardiac resynchronization therapy in the MADIT-CRT trial. Circ Heart Fail. 2014; 7(1): 154-60.
    34. Thomas G, Kim J, Lerman BB. Improving Cardiac Resynchronisation Therapy. Arrhythmia & electrophysiology review 2019; 8(3): 220-7.
    35. Domenichini G, Le Bloa M, Teres Castillo C, et al. Conduction System Pacing versus Conventional Biventricular Pacing for Cardiac Resynchronization Therapy: Where Are We Heading? J Clin Med 2023; 12(19).
    36. Bouzas-Mosquera A, Broullón FJ, Álvarez-García N, et al. Left atrial size and risk for all-cause mortality and ischemic stroke. CMAJ. 2011; 183(10): E657-64.
    37. Dittrich HC, Pearce LA, Asinger RW, et al. Left atrial diameter in nonvalvular atrial fibrillation: An echocardiographic study. Stroke Prevention in Atrial Fibrillation Investigators. Am Heart J. 1999; 137(3): 494-9.
    38. Meurling CJ, Roijer A, Waktare JE, et al. Prediction of sinus rhythm mainte¬nance following DC-cardioversion of persistent atrial fibrillation – the role of atrial cycle length. BMC Cardiovasc Disord. 2006; 6: 11.
    39. Khurshid S, Obeng-Gyimah E, Supple GE, et al. Reversal of Pacing-Induced Cardiomyopathy Following Cardiac Resynchronization Therapy. JACC Clinical electrophysiology 2018; 4(2): 168-77.
    40. Quan W, Yang X, Li Y, et al. Left atrial size and risk of recurrent ischemic stroke in cardiogenic cerebral embolism. Brain Behav. 2020; 10(10): e01798.
    41. Patel JB, Borgeson DD, Barnes ME, et al. Mitral regurgitation in patients with advanced systolic heart failure. J Card Fail. 2004; 10(4): 285-91.
    42. Savaş G, Şahin Ö, Yaşan M, et al. Does the volume overload exaggerate the severity of mitral regurgitation in patients with decompensated heart failure? Turk J Med Sci. 2020; 50(6): 1552-8.
    43. Xu Y, Zhao L, Zhang L, et al. Left atrial enlargement and the risk of stroke: A meta-analysis of prospective cohort studies. Front Neurol. 2020; 11: 26.
    44. Merkely B, Hatala R, Wranicz JK, et al. Upgrade of right ventricular pacing to cardiac resynchronization therapy in heart failure: a randomized trial. Eur Heart J. 2023; 44(40): 4259-69.
    45. Kerley RN, O'Dowling C, Campos F, et al. The therapeutic benefit of upgrade to cardiac resynchronization therapy in patients with pacing-induced cardiomyopathy. Heart Rhythm O2. 2023; 4(4): 225-31.
    46. Wu QJ, Zhang TN, Chen HH, et al. The sirtuin family in health and disease. Signal Transduct Target Ther. 2022; 7(1): 402.
    47. Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol. 2011; 206: 125-62.
    48. Bindu S, Pillai VB, Gupta MP. Role of Sirtuins in Regulating Pathophysiology of the Heart. Trends in endocrinology and metabolism: TEM 2016; 27(8): 563-73.
    49. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006; 127(6): 1109-22.
    50. Bugyei-Twum A, Ford C, Civitarese R, et al. Sirtuin 1 activation attenuates cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transactivation. Cardiovasc Res 2018; 114(12): 1629-41.
    51. Han L, Tang Y, Li S, et al. Protective mechanism of SIRT1 on Hcy-induced atrial fibrosis mediated by TRPC3. J Cell Mol Med 2020; 24(1): 488-510.
    52. Treviño-Saldaña N, García-Rivas G. Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals. Oxidative medicine and cellular longevity 2017; 2017: 1750306.
    53. Tamura RE, de Vasconcellos JF, Sarkar D, et al. GADD45 proteins: central players in tumorigenesis. Current molecular medicine 2012; 12(5): 634-51.
    54. Scuto A, Kirschbaum M, Buettner R, et al. SIRT1 activation enhances HDAC inhibition-mediated upregulation of GADD45G by repressing the binding of NF-κB/STAT3 complex to its promoter in malignant lymphoid cells. Cell death & disease 2013; 4(5): e635.
    55. Cheng KY, Hao M. Mammalian Target of Rapamycin (mTOR) Regulates Transforming Growth Factor-β1 (TGF-β1)-Induced Epithelial-Mesenchymal Transition via Decreased Pyruvate Kinase M2 (PKM2) Expression in Cervical Cancer Cells. Medical science monitor : international medical journal of experimental and clinical research 2017; 23: 2017-28.
    56. Karimi Roshan M, Soltani A, Soleimani A, et al. Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process. Biochimie 2019; 165: 229-34.
    57. Lv W, Zhang L, Cheng X, et al. Apelin Inhibits Angiotensin II-Induced Atrial Fibrosis and Atrial Fibrillation via TGF-β1/Smad2/α-SMA Pathway. Front Physiol 2020; 11: 583570.
    58. Li Z, Wang J, Yang X. Functions of autophagy in pathological cardiac hypertrophy. International journal of biological sciences 2015; 11(6): 672-8.
    59. Giampieri F, Afrin S, Forbes-Hernandez TY, et al. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxidants & redox signaling 2019; 30(4): 577-634.
    60. Bartoli-Leonard F, Wilkinson FL, Langford-Smith AWW, et al. The Interplay of SIRT1 and Wnt Signaling in Vascular Calcification. Front Cardiovasc Med 2018; 5: 183.
    61. Nguyen P, Lee S, Lorang-Leins D, et al. SIRT2 interacts with β-catenin to inhibit Wnt signaling output in response to radiation-induced stress. Molecular cancer research : MCR 2014; 12(9): 1244-53.
    62. Pan H, Finkel T. Key proteins and pathways that regulate lifespan. J Biol Chem 2017; 292(16): 6452-60.
    63. Sergi C, Shen F, Liu SM. Insulin/IGF-1R, SIRT1, and FOXOs Pathways-An Intriguing Interaction Platform for Bone and Osteosarcoma. Front Endocrinol (Lausanne) 2019; 10: 93.
    64. Dong XC. FOXO transcription factors in non-alcoholic fatty liver disease. Liver research 2017; 1(3): 168-73.
    65. Hori YS, Kuno A, Hosoda R, et al. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One 2013; 8(9): e73875.
    66. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; 221(1): 3-12.
    67. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxidants & redox signaling 2014; 20(3): 460-73.
    68. Lee IH. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Experimental & molecular medicine 2019; 51(9): 1-11.
    69. Zullo A, Mancini FP, Schleip R, et al. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity. Wound Repair Regen 2021; 29(4): 650-66.
    70. Shaaban A, Scott SS, Greenlee AN, et al. Atrial fibrillation in cancer, anticancer therapies, and underlying mechanisms. J Mol Cell Cardiol. 2024; 194: 118-32.
    71. Tiwari S, Løchen ML, Jacobsen BK, et al. CHA2DS2-VASc score, left atrial size and atrial fibrillation as stroke risk factors in the Tromsø Study. Open Heart. 2016; 3(2): e000439.
    72. Sajeev JK, Kalman JM, Dewey H, et al. The Atrium and Embolic Stroke: Myopathy Not Atrial Fibrillation as the Requisite Determinant? JACC Clin Electrophysiol. 2020; 6(3):2 51-61.
    73. Vassiliki' Coutsoumbas G, Di Pasquale G. Ischaemic stroke in the absence of documented atrial fibrillation: is there who could benefit from anticoagulant therapy? Eur Heart J Suppl 2022; 24(Suppl I): I89-5.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE