簡易檢索 / 詳目顯示

研究生: 黃聿忻
Huang, Yu-Hsin
論文名稱: 人類之hHR23A和hHR23B蛋白質在DNA修復及蛋白質降解作用中之功能性研究
Functional studies of the human hHR23A and hHR23B proteins in DNA repair and proteolysis
指導教授: 黃溫雅
Huang, Wenya
郭保麟
Kuo, Pao-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 121
中文關鍵詞: DNA修復核苷酸切除修復ubiquitin相似區域蛋白質降解干擾性RNA著色性乾皮症hHR23
外文關鍵詞: hHR23, RNA interference, nucleotide excision repair and DNA repair., ubiquitin-like domain, Xeroderma pigmentosum, protein degradation
相關次數: 點閱:233下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類的hHR23A和hHR23B基因與酵母菌Saccharomyces cerevisiae 的RAD23基因同源,這兩個因子都含有數個功能區域,包括N端的ubiquitin相似區域、兩個ubiquitin連結區域和XPC鍵結區域。先前的研究顯示hHR23B蛋白質與XPC蛋白質結合,在C型著色性亁皮症中有缺損的現象,並且參與核苷酸切除修復的過程,但是hHR23A的功能還不是很清楚。我們發現hHR23B蛋白的XPC鍵結區域能造成野生型hHR23B顯著抑制的外顯型,並且在寄主細胞再活化分析中部分抑制DNA修復系統的功能。相反地,hHR23A的XPC鍵結區域卻沒有類似的作用。這顯示了hHR23B參與全面性基因組修復(global genome repair)的路徑,而hHR23A則否。這個結果也利用穩定表達hHR23B XPC鍵結區域的NIH/3T3細胞株再作確認。在過去幾年中,干擾性RNA系統已建立為壓抑模式中很有效力的工具,無論是在活體內或體外的試驗。我們在hHR23A和hHR23B基因分別建構了三個干擾性RNA的建構物,試圖釐清hHR23A和hHR23B的功能。在HtTA1細胞中以西方墨點法分析,發現其中兩個hHR23A和其中一個hHR23B的建構物,能抑制內源性的hHR23A或hHR23B蛋白質的表現,並且也用RNA反轉錄聚合酶鏈鎖反應再作確認。此外,在hHR23A的ubiquitin連結區域中,將可能與ubiquitin結合的位置製造突變株,也將會測試它們被接上ubiquitin的能力。利用這些可能與ubiquitin相關的突變株,研究hHR23A在蛋白質降解和DNA修復中扮演的角色。

    Human hHR23A and hHR23B genes are the homologues of Saccharomyces cerevisiae RAD23 gene and these two factors both contain functional domains including an ubiquitin-like (UBL) domain at the N-termini, two ubiquitin-associated (UBA) domains and an XPC-binding domain. Previous studies showed that the hHR23B protein is complexed with the XP group C (XPC) protein, defective in the xeroderma pigmentosum C syndrome, and is involved in the global genome nucleotide excision repair (NER) pathway, but the functions of hHR23A remain to be elucidated. We found that the XPC-binding domain of hHR23B contributes to a dominant negative phenotype for the wild-type hHR23B protein and partially inhibits the function of repair system by the host cell reactivation (HCR) assay. On the contrary, the XPC-binding domain of hHR23A didn’t exhibit such an effect. It indicated that only hHR23B participates in global genome repair (GGR) pathway, but hHR23A does not. These data have been confirmed in NIH/3T3 cells stably transfected with the XPC-binding domain of the hHR23B. In past years, RNA interference (RNAi) system has been a powerful tool to establish knock-down models in vitro and in vivo. We constructed three RNAi constructs of each of the hHR23A or hHR23B genes, attempting to clarify the functions of hHR23A/hHR23B. In our data, two of the hHR23A and one hHR23B constructs inhibited endogenous levels of the hHR23A or hHR23B in HtTA1 cells, assayed by Western blot. These data have been confirmed by RT-PCR. In addition, the UBA domains of hHR23A/hHR23B are presumably ubiquitinated. The mutants in potential ubiquitination sites on UBA domains of hHR23A will therefore be examined for their ubiquitination activities. Using these potential ubiquitination mutants, the hHR23A would be studied for their roles in proteolysis and DNA repair.

    表目錄……………………………………………………1 圖目錄……………………………………………………2 1.緒論……………………………………………………4 1.1 DNA的損傷與修復…………………………………4 1.2 紫外光對DNA之損傷………………………………6 1.3 核苷酸切除修復……………………………………7 1.4 蛋白質降解…………………………………………9 1.5 hHR23A與hHR23B…………………………………10 1.6 研究動機…………………………………………11 1.7 原理…………………………………………………12 1.7.1 寄主細胞再活化分析……………………………12 1.7.2 西南方墨點法……………………………………13 1.7.3 短片段的干擾性RNA……………………………13 1.7.4 Glutathione S-transferase系統……………14 2.材料與方法……………………………………………15 2.1 細胞株與細胞培養…………………………………15 2.1.1 哺乳動物細胞株的培養與繼代…………………15 2.1.2 大腸桿菌的培養…………………………………16 2.2 Clone的製備………………………………………16 2.2.1 質體的建構方式…………………………………16 2.2.2 製作DNA的鈍端…………………………………24 2.2.3 去除DNA 5’端的磷酸鹽…………………………25 2.2.4 聚合酶鏈鎖反應…………………………………25 2.2.5 高正確性之聚合酶鏈鎖反應……………………26 2.2.6 以酒精沉降法萃取純化DNA……………………26 2.2.7 以膠體純化法萃取純化DNA……………………27 2.2.8 大腸桿菌的質體轉化……………………………27 2.2.9 小量質體抽取……………………………………28 2.3 DNA修復試驗………………………………………29 2.3.1 中量質體的抽取…………………………………29 2.3.2 製造DNA損傷……………………………………30 2.3.2.1 利用紫外光照射製造DNA損傷………………30 2.3.2.2 利用化學藥品製造DNA損傷…………………30 2.3.3 哺乳類細胞的質體轉染…………………………31 2.3.4 寄主細胞再活化分析……………………………31 2.3.5 西南方墨點法……………………………………32 2.3.5.1 抽取細胞中總體DNA…………………………32 2.3.5.2 以抗體辨識DNA損傷結構……………………33 2.3.6 哺乳類細胞之穩定細胞株的建立………………33 2.4 建立哺乳類細胞的RNA干擾系統…………………34 2.4.1 干擾片段的設計…………………………………34 2.4.2 質體的建立………………………………………34 2.4.3 哺乳類細胞的質體轉染…………………………35 2.4.4 收取細胞內蛋白…………………………………35 2.4.5 西方墨點法………………………………………36 2.4.6 RNA的抽取………………………………………37 2.4.7 RNA的純化………………………………………37 2.4.8 RNA膠體電泳………………………………………38 2.4.9 RNA反轉錄聚合酶鏈鎖反應………………………38 2.4.10 DNA膠體電泳……………………………………39 2.4.11 北方墨點法(Northern blot)…………………39 2.4.11.1 RNA轉漬………………………………………39 2.4.11.2 製備RNA探針…………………………………40 2.4.11.3 RNA與探針雜交………………………………40 2.5 蛋白質的交互作用測試……………………………41 2.5.1 蛋白質之誘導表現測試…………………………41 2.5.2 蛋白質之大量萃取………………………………41 2.5.3 直立式膠體電泳…………………………………41 3.結果……………………………………………………43 3.1 細胞株的選擇………………………………………43 3.2 HtTA1細胞株能修復紫外光造成的DNA損傷………43 3.3 hHR23A及hHR23B的各個功能區域對於DNA修復的影響………………………………………………44 3.3.1 XPC鍵結區域的缺失對於hHR23A或hHR23B的影響並不顯著…………………………………………44 3.3.2 表現hHR23B的XPC鍵結區域對於DNA修復有顯著的抑制效果…………………………………………45 3.3.3 UBL區域的缺失對於hHR23A或hHR23B的影響並不顯著………………………………………………46 3.3.4 表現hHR23A或hHR23B的UBL區域對於DNA修復的影響並不顯著…………………………………………46 3.3.5 UBA區域的單點突變及雙點突變對於hHR23A或hHR23B的影響……………………………………47 3.4 UBA區域的單點突變及多點突變對於hHR23A與ubiquitin結合能力的影響………………………48 3.5 以RNAi的方法抑制細胞中的hHR23A或hHR23B………………………………49 3.5.1 建立RNAi……………………………………49 3.5.2 hHR23A或hHR23B的RNAi在蛋白質表現上的抑制效果……………………………………………………50 3.5.3 hHR23A或hHR23B的RNAi在RNA層級上的抑制效果…………………………………………………………50 3.5.4 hHR23A或hHR23B的RNAi在DNA修復上的影響……………………………………………51 4. 討論…………………………………………………53 4.1 XPC鍵結區域對於hHR23A或hHR23B的影響………53 4.2 UBL區域對於hHR23A或hHR23B的影響…………54 4.3 UBA區域對於hHR23A或hHR23B的影響…………54 4.4 hHR23A和hHR23B的RNAi系統之建立……………55 4.5 hHR23A和hHR23B在DNA修復及蛋白質降解中扮演的角色………………………………………………56 4.6 hHR23A及hHR23B的其他功能……………………57 參考文獻………………………………………………59 表………………………………………………………71 圖………………………………………………………87 附錄一 pGEX-KG質體…………………………………116 附錄二 pGEM-T Easy質體……………………………117 附錄三 pcDNA3.1質體………………………………118 附錄四 pCMV-beta質體……………………………119 附錄五 pCMV-Luc質體…………………………………120 自述……………………………………………………121

    Aaltonen, L. A., Peltomaki, P., Leach, F. S., Sistonen, P., Pylkkanen, L., Mecklin, J. P., Jarvinen, H., Powell, S. M., Jen, J., and Hamilton, S. R. Clues to the pathgenesis of familial colorectal cancer. Science. 260, 812-816 (1993)
    Adams, J. Proteasome inhibitors as new anticancer drugs. Current Opinion in Oncology. 14, 628-634 (2002)
    Agami, R. RNAi and related mechanisms and their potential use for therapy. Curr. Opin. Chem. Biol. 6, 829-834 (2002)
    Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y., Hanaoka, F. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J. Biol. Chem. 276, 18665-18672 (2001)
    Araujo, S. and Wood, R.D. Protein complexes in nucleotide excision repair. Mutat. Res. 435, 23-33 (1999)
    Batty, D.P. and Wood, R.D. Damage recognition in nucleotide excision repair of DNA. Gene 241, 193-204 (2000)
    Bernstein, E, Caudy, A.A., Hammond, S.M. and Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409, 363-366 (2001)
    Bertolaet, B.L., Clarke, D.J., Wolff, M., Watson, M.H., Henze, M., Divita, G. and Reed, S.I. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nature Struct. Biol. 8, 417-422 (2001)
    Bourre, F., Renault, G. and Sarasin, A. Sequence effect on alkali- sensitive sites in UV-irradiated SV40 DNA. Nucleic Acids Research, 15, 8861-8875 (1987)
    Brummelkamp, T.R., Bernards, R. and Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 296, 550-553 (2002)
    Chen, L., Shinde, U., Ortolan, T. G., and Madura, K. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO rep. 2, 933-938 (2001)
    Clarke, D.J., Mondesert, G., Segal, M., Bertolaet, B.L., Jensen, S., Wolff, M., Henze, M. and Reed, S.I. Dosage suppressors of pds1 implicate ubiquitin-associated domains in checkpoint control. Mol. Cell. Biol. 21, 1997-2007 (2001)
    Clarke, D.J., Segal, M., Jensen, S. and Reed, S.I. Mec1p regulates Pds1p levels in S phase: complex coordination of DNA replication and mitosis. Nat. Cell Biol. 3, 619-27 (2001)
    Cleaver, J. E. Defective repair replication in xeroderma pigmentosum. Nature. 218, 652-656 (1968)
    de Laat, W.L., Jaspers, N.G.J. and Hoeijmakers, J.H.J. Molecular mechanism of nucleotide excision repair. Genes & Dev. 13, 768-785 (1999)
    de Laat, W. L., Appeldoorn, E., Sugasawa, K., Weterings, E., Jaspers, N. G. J. and Hoeijmarks, J. H. J. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes & Dev. 12, 2598-2609 (1998)
    Elbashir, S.M., Lendeckel, W. and Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188-200 (2001)
    Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411, 494-498 (2001)
    Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C. and Chen, Z. J. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell. 103, 351-361 (2000)
    Deveraux, Q., Ustrell, V., Pickart, C. and Rechsteiner, M. A 26S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059-7061 (1994)
    Elder, R.T., Song, X., Chen, M., Hopkins, K.M., Lieberman, H.B. and Zhao, Y. Involvement of rhp23, a Schizosaccharomyces pombe homolog of the human HHR23A and Saccharomyces cerevisiae RAD23 nucleotide excision repair genes, in cell cycle control and protein ubiquitination. Nucleic Acids Res. 30, 581-591 (2002)
    Evans, E., Moggs, J.G., Hwang, J.R., Egly, J.-M., and Wood, R.D. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16, 6559-6573 (1997)
    Finley, D., Bartel, B. and Varshavsky, A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature. 338, 394-401 (1989)
    Finley, D. and Chau, V. Ubiquitination. Annu. Rev. Cell. Biol. 7, 25-69 (1991)
    Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391, 806-811 (1998)
    Friedberg, E.C. How nucleotide excision repair protects against cancer. Nature Rev. 1, 22-33 (2001)
    Friedberg, E.C., Walker, G.C. and Siede, W. DNA repair and mutagenesis. ASM Press. Washington. (1995)
    Funakoshi, M., Sasaki, T., Nishimoto, T. and Kobayashi, H. Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc. Natl. Acad. Sci. USA 99, 745-750 (2002)
    Gillette, T.G., Huang, W., Russell, S.J., Reed, S.H., Johnston, S.A. and Friedberg, E.C. The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes & Dev. 15, 1528-1539 (2001)
    Gobel, M. G., Yochem, J., Jentsch, S., McGrath, J. P., Varshavsky, A. and Byers, B. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241, 1331-1335 (1988)
    Guan, K.L. and Dixon, J.E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with Glutathione S-transferase. Analytical Biochemistry. 192, 262-267 (1991)
    Guzder, S.N., Bailly, V., Sung, P., Prakash, L. and Prakash, S. Yeast DNA repair protein rad23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor rad14. J. Biol. Chem. 270, 8385-8388 (1995)
    Guzder, S.N., Sung, P., Prakash, L. and Prakash, S. Affinity of yeast nucleotide excision repair factor 2, consisiting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. J. Biol. Chem. 273, 31541-31546 (1998)
    Hammond, S.M., Bernstein, E., Beach, D. and Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 404, 293-296 (2000)
    Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 166, 557-580 (1983)
    Hardeland, U., Steinacher, R., Jiricny, J. and Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21, 1456-1464 (2002)
    Hartmann-Petersen, R., Seeger, M. and Gordon, C. Transferring substrates to the 26S proteasome. Trends Biochem. Sci. 28, 26-31 (2003)
    He, Z., Henricksen, L.A., Wold, M.S. and Ingles, C.J. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature. 374, 566-569 (1995)
    Hiyama, H., Yokoi, M., Masutani, C., Sugasawa, K., Maekawa, T., Tanaka, K., Hoeijmakers, J.H.J. and Hanaoka, F. Interaction of hHR23 with s5a. Mol. Cell. Biol. 16, 4852-4861 (1999)
    Hochstrasser, M. New proteases in a ubiquitin stew. Science. 298, 549-552 (2002)
    Hoeijmakers, J.H.J. Genome maintenance mechanisms for preventing cancer. Nature. 411, 366-374 (2001)
    Hofman, K. and Bucher, P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitylation pathway. Trends. Biol. Sci. 21, 172-173 (1996)
    Hofmann, K. and Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation system. Trends Biochem. Sci. 26, 347-350 (2001)
    Jansen, L.E.T., Verhage, R.A. and Brouwer, J. Preferential binding of yeast rad4-rad23 complex to damaged DNA. J. Biol. Chem. 273, 33111-33114 (1998)
    Jentsch, S., McGrath, J. P. and Varshavsky, A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature. 329, 131-4 (1987)
    Jesenberger, V. and Jentsch, S. Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Biol. 3, 112-121 (2002)
    Kominami, K., Okura, N., Kawamura, M., DeMartino, G.N., Slaughter, C.A., Shimbara, N., Chung, C.H., Fujimuro, M., Yokosawa, H., Shimizu, Y., Tanahashi, N., Tanaka, K. and Toh-e A. Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of nin1-1. Mol. Biol. Cell. 8, 171-187 (1997)
    Kumar, S., Talis, A.L. and Howley, P.M. Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J. Biol. Chem. 274, 18785-18792 (1999)
    Kusumoto, R., Masutani, C., Sugasawa, K., Iwai, S., Araki, M., Uchida, A., Mizukoshi, T. and Hanaoka, F. Diversity of the damage recognition step in the global genomic nucleotide excision repair in vitro. Mutat. Res. 485, 219-227 (2001)
    Lamberston, D., Chen, L. and Madura, K. Pleiotropic defects caused by loss of the proteasome-interacting factors rad23 and rpn10 of Saccharomyces cerevisiae. Genetics 153, 69-79 (1999)
    Lambertson D, Chen L, Madura K. Investigating the importance of proteasome-interaction for Rad23 function. Curr. Genet. 42, 199-208 (2003)
    Legerski, R., and Peterson, C. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature. 359, 70-73 (1992)
    Li, L., Lu, X., Peterson, C. and Legerski, R. XPC interacts with both HHR23B and HHR23A in vivo. Mutat. Res. 383, 197-203 (1997)
    Ma, L., Hoeijmakers, J.H.J. and van der Eb, A.J. Mammalian nucleotide excision repair. Biochimica et Biophysica Acta 1242, 137-164 (1995)
    Madura, K. and Prakash, S. Transcript levels of the Saccharomyes cerevisiae DNA repair gene RAD23 increase in response to UV light and in meiosis but remain constant in the mitotic cell cycle. Nucleic Acids Res. 18, 4737-4742 (1990)
    Masutani, C., Araki, M., Sugasawa, K., van der Spek, P.J., Yamada, A., Uchida, A., Maekawa, T., Bootsma, D., Hoeijmakers, J.H.J. and Hanaoka, F. Identification and characterization of XPC-binding domain of hHR23B. Mol. Cell. Biol. 17, 6915-6923 (1997)
    Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P.J., Bootsma, D., Hoeijmakers, J.H.J. and Hanaoka, F. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homolog of yeast RAD23. EMBO J. 13, 1831-1843 (1994)
    Matsunaga, T., Mu, D., Park, C.-H., Reardon, J. T. and Sancar, A. Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. J. Biol. Chem. 270, 20862-20869 (1995)
    Memisoglu, A. and Samson, L. Base excision repair in yeast and mammals. Mutat. Res. 451, 39-51 (2000)
    Miao, F., Bouziane, M., Dammann, R., Masutani, C., Hanaoka, F., Pfeifer, G. and O’Connor, T.R. 3-Methyladenine-DNA glycosylase (MPG protein) interacts with human rad23 proteins. J. Biol. Chem. 275, 28433-28438 (2000)
    Mitchell, D. L., Jen, J. and Cleaver, J. E. Sequence specificity of cyclobutane pyrimidine dimmers in DNA treated with solar (ultraviolet B) radiation. Nucleic Acids Research. 20, 225-229 (1992)
    Modrich, P. Mismatch repair, genetic stability, and cancer. Science. 266, 1959-1960 (1994)
    Muellar, J.P. and Smerdon, M.J. Rad23 is required for transcription-coupled repair and efficient overall repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2361-2368 (1996)
    Ng, J.M., Vermeulen, W., van der Horst, G.T., Bergink, S., Sugasawa, K., Vrieling, H., Hoeijmakers, J.H. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 17, 1630-1645 (2003)
    Norbury, C. J. and Hickson, I. D. Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicol. 2001. 41:367-401
    O’Donovan, A., Davies, A. A., Moggs, J. G., West, S. C. and Wood, R. D. XPG endonuclease makes the 3’ incision in human DNA nucleotide excision repair. Nature 371, 432-435 (1994)
    Ortolan, T.G., Tongaonkar, P., Lambertson, D., Chen, L., Schauber, C. and Madura, K. The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly. Nature Cell Biol. 2, 601-608 (2000)
    Ou, C.Y., Pi, H. and Chien C.T. Control of protein degradation by E3 ubiquitin ligases in Drosophilia eye development. Trands in Genetics. 19, 382-389 (2003)
    Pal-Bhadra, M., Bhadra, U. and Birchler, J.A. Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90, 479-490 (1997)
    Pal-Bhadra, M., Bhadra, U. and Birchler, J.A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell. 9, 315-327 (2002)
    Parrish, S., Fleenor, J., Xu, S., Mello, C. and Fire, A. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol. Cell 6, 1077-1087 (2000)
    Raasi, S. and Pickart, C.M. Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem. 278, 8951-8959 (2003)
    Robbins, J. H., Kraemer, K. H., Lutzner, M. A., Festoff B. W. and Coon, H. G. Xeroderma pigmentosum. An inherited disease with sun sensitivity, multiple cutaneous neoplasms and abnormal DNA repair. Annals of Internal Medicine. 80, 221-248 (1974)
    Russell, S.J., Reed, S.M., Huang, W., Friedberg, E.C. and Johnston, S.A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 3, 687-695 (1999)
    Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lamberston, D., Potts, W. and Madura, K. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715-718 (1998)
    Schul, W., Jans, J., Rijksen, Y.M., Klemann, K.H., Eker, A.P., de Wit, J., Nikaido, O., Nakajima, S., Yasui, A., Hoeijmakers, J.H. and van der Horst, G.T. Enhanced repair of cyclobutane pyrimidine dimers and improved UV resistance in photolyase transgenic mice. EMBO J. 21, 4719-4729 (2002)
    Sijbers, A. M., de Laat, W. L., Ariza, R. R., Biggerstaff, M., Wei, Y.-F., Moggs, J. G., Carter, K. C., Shell, B. K., Evans, E., de Jong, M.C., Rademarks, S., de Rooij, J., Jaspers, N. G. J., Hoeijmarks, J. H. J. and Wood, R. D. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86, 811-822 (1996)
    Sugasawa, K., Masutani, C., Uchida, A., Maekawa, T., van der Spek, P.J., Bootsma, D., Hoeijmakers, J.H.J. and Hanaoka, F. HHR23B, a human rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol. Cell. Biol. 16, 4852-4861 (1996)
    Sugasawa, K., Ng, J.M.Y., Masutani, C., Maekawa, T., Uchida, A., van der Spek, P.J., Eker, A.P.M., Rademakers, S., Visser, C., Aboussekhra, A., Wood, R.D., Hanaoka, F., Bootsma, D. and Hoeijmakers, J.H.J. Two human homologs of rad23 are functionally interchangeable in complex formation and stimulation of XPC repair activity. Mol. Cell. Biol. 17, 6924-6931 (1997)
    Sugasawa, K., Ng, J.M.Y., Masutani, C., Iwai, S., van der Spek, P.J., Eker, A.P.M., Hanaoka, F., Bootsma, D. and Hoeijmakers, J.H.J. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2, 223-232 (1998)
    Suzuki, T., Park, H., Kwofie, M.A. and Lennarz, W.J. Rad23 provides a link between the Png1 deglycosylating enzyme and 26s proteasome in yeast. J. Biol. Chem. 276, 21601-21607 (2001)
    Sweder, K. and Madura, K. Regulation of repair by the 26S proteasome. J. Biomed. Biotechnol. 2, 94-105 (2002)
    Tabara, H., Sarkissian, M., Kelly, W.G., Fleenor, J., Grishok, A., Timmons, L., Fire, A. and Mello, C.C. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123-132 (1999)
    Takebe, H., Miki, Y., Kozuka, T., Fujiwara, J. I., Tanaka, K., Sasaki, M. S. and Akiba, H. DNA repair characteristics and skin cancers of xeroderma pigmentosum patients in Japan. Cancer Research 367, 490-495 (1977)
    Thrower, J.S., Hoffman, L., Rechsteiner, M., Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94-102 (2000)
    Tongaonkar P, Madura K. Reconstituting ubiquitination reactions with affinity-purified components and 32P-ubiquitin. Anal Biochem. 260, 135-141 (1998)
    van der Spek, P.J., Eker, A., Rademaklers, S., Visser, C., Sugasawa, K., Masutani, C., Hanaoka, F., Bootsma, D. and Hoeijmakers, J.H.J. XPC and human homologs of Rad23: intracellular localization and relationship to other nucleotide excision repair complexes. Nucleic Acids Res. 24, 2551-2559 (1996)
    van der Spek, P.J., Smit, E.M.E., Beverloo, H.B., Sugasawa, K., Masutani, C., Hanaoka, F., Hoeijmakers, J.H.J. and Hagemeijer, A. Chromosomal localization of three repair genes: the xeroderma pigmentosum group C gene and two human homologs of yeast rad23. Genomics 23, 651-658 (1994)
    van der Spek, P.J., Visser, C.E., Hanaoka, F., Smit, B., Hagemeijer, A., Bootsma, D. and Hoeijmajers, J.H.J. Cloning, comparative mapping, and RNA expression of the mouse homologues of the Saccharomyces cerevisiae nucleotide excision repair gene RAD23. Genomics 31, 20-27 (1996)
    van Laar, T., van der Eb, A.J. and Terleth, C. A role for rad23 proteins in 26S proteasome-dependent protein degradation? Mutat. Res. 499, 53-61 (2002)
    Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93, 12142-12149 (1996)
    Wahl, G.M. and Carr, A.M. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nature Cell Biol. 3, E277-E286 (2001)
    Wakasugi, M. and Sancar, A. Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc. Natl. Acad. Sci. USA 95, 6669-6674 (1998)
    Watkins, J.F., Sung, P., Prakash, L. and Prakash, S. The Saccharomyces cerevisiae DNA repair gene rad23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol. Cell. Biol. 13, 7757-7765 (1993)
    Weissman, A.M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2:169-178 (2001)
    Wilkinson, C.R., Ferrell, K., Penney, M., Wallace, M., Dubiel, W. and Gordon, C. Analysis of a gene encoding Rpn10 of the fission yeast proteasome reveals that the polyubiquitin-binding site of this subunit is essential when Rpn12/Mts3 activity is compromised. J. Biol. Chem. 275, 15182-15192 (2000)
    Wilkinson, C.R.M., Seeger, M., Hartmann-Petersen, R., Stone, M., Wallace, M., Semple, C. and Gordon, C. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nature Cell Biol. 3, 939-943 (2001)
    Winston, W.M., Molodowitch, C. and Hunter, C.P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science. 295, 2456-2459 (2002)
    Wood, R.D. DNA repair in eukaryotes. Annu. Rev. Biochem. 65, 135-167 (1996)
    Wood, R. D., Mitchell, M., Sgouros, J. and Lindahl, T. Human DNA repair genes. Science 291, 1284-1289 (2001)
    Yokoi, M., Masutani, C., Maekawa, T., Sugasawa, K., Ohkuma, Y. and Hanaoka, F. The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J. Biol. Chem. 275, 9870-9875 (2000)
    Zamore, P.D., Tuschl, T., Sharp, P.A. and Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33 (2000)
    Zhu, Q., Wani, G., Wani, M.A. and Wani, A.A. Human homologue of yeast rad23 protein A interacts with p300/cyclic AMP-responsive element binding (CREB)-binding protein to down-regulate transcriptional activity of p53. Cancer Res. 61, 64-70 (2001)

    下載圖示 校內:2004-09-08公開
    校外:2004-09-08公開
    QR CODE