簡易檢索 / 詳目顯示

研究生: 李育群
Li, Yu-Chun
論文名稱: 鍺酸鹽LaAlGe2O7螢光粉光致發光特性研究
Synthesis and photo-luminescent properties of LaAlGe2O7 based phosphors
指導教授: 張炎輝
Chang, Yen-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 167
中文關鍵詞: 螢光粉能量轉移光致發光
外文關鍵詞: energy transfer, photoluminescence, phosphor
相關次數: 點閱:88下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以鍺酸鹽類之LaAlGe2O7作為螢光體主體晶格材料,分別將三價稀土金屬離子Ce3+, Pr3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Er3+與Tm3+等作為活化劑,摻雜於主體晶格中,討論其材料合成及光致發光特性。本研究可分為兩大部分:第一部份著重於摻雜單一稀土金屬離子於主體晶格中,討論各個活化劑的螢光特性。第二部份則藉由Gd3+與Tb3+離子的共同摻雜,討論稀土金屬離子間的能量轉移對螢光性質的影響。
    由實驗結果顯示,以高能震動球磨法所製備之LaAlGe2O7: Ln3+ (Ln = 稀土金屬離子)螢光粉,在1100 ~ 1250℃煆燒可得穩定之LaAlGe2O7單一相結晶;且所摻雜的稀土離子皆可與LaAlGe2O7晶格中La3+離子相互取代形成完全的固溶體,晶體之表面型態並無太大的改變,系統仍維持一定的穩定性。
    由Eu3+離子(5D07F1/5D07F2)與Dy3+離子(4F9/2→6H15/2/4F9/2→6H13/2)在LaAlGe2O7中螢光強度的比值可以得知稀土離子應填入具備中心對稱的晶格點位置。經發射光譜與衰減曲線的分析可以發現Tb3+離子之5D3能階、Pr3+離子之1D2能階與3P0能階、Tm3+離子之1D2能階、Er3+離子之4S3/2能階、Sm3+離子之4G5/2能階及,Dy3+離子之4F9/2能階,皆會隨著摻雜濃度的增加產生交叉緩解效應,使得濃度淬滅現象發生濃度明顯較低,同時發光的衰減速率亦因交叉緩解現象而產生改變,使得衰減曲線呈現非自然指數之衰減行為。由LaAlGe2O7: Ln3+ (Ln = Ce, Pr, Tb)螢光粉體的吸收及激發光譜得知,Ce3+, Pr3+及Tb3+離子的4f-4f5d躍遷吸收與LaAlGe2O7的主體晶格吸收能帶重疊,導致光游離或補償效應的產生,造成發光效應的猝滅。LaAlGe2O7: Ln3+ (Ln = Eu, Sm, Dy)螢光粉體的電荷轉移吸收帶由於Ln3+-O2-共價性過低或主體晶格吸收而導致CTS(charge transfer state)無法有效轉移給稀土離子發光,因此只能由稀土離子之4f內層軌域躍遷進行激發。
    在不同稀土離子間的能量轉移研究方面,LaAlGe2O7: Gd3+, Tb3+中的Gd3+離子以兩種能量轉移機制轉移至Tb3+離子:(1)多聲子緩解與(2)交叉緩解能量轉移,不同的轉移機制會改變Tb3+離子能階的衰減速率,因而改變Tb3+離子的衰減行為。
    本研究所製備的螢光粉體具備各種色系,包括藍色:Tm3+、綠色:Tb3+, Er3+, Pr3+、紅色:Eu3+, Sm3+、藍白色:Dy3+以及在紫外光區的Gd3+,最佳激發波長位於350 ~ 450 nm之間,具有發展為白光LED照明系統之螢光粉應用的潛力。

    The synthesis and photoluminescent properties of lanthanum aluminum germinate (LaAlGe2O7) doped with various rare earth ions (Ce3+, Pr3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Er3+ and Tm3+) have been investigated. This study could be divided into two parts: (1) the luminescent properties of a series of rare earth ions, (2) the energy transfer properties over ion-ion interaction by codoped Gd3+ and Tb3+ ions.
    The experimental results demonstrated that the crystal can be assigned to the structural nature of the LaAlGe2O7 phase as the calcination temperature in the range of 1100 ~ 1250℃, and the rare earth ions were satisfactorily substituted for the La3+ ions in the lattice. The LaAlGe2O7 powders doped with rare-earth ions at different concentrations do not significantly affect morphology.
    The (5D0→7F1)/(5D0→7F2) emission ratio of Eu3+ and the (4F9/2→6H15/2)/( 4F9/2→6H13/2) emission ratio of Dy3+ reveal that the local symmetry of the activator ions belongs to inversion symmetry in the LaAlGe2O7 host lattice. By analyzing the emission spectra and decay curves, the energy transfer (cross-relaxation) over ion-ion interaction between two neighboring rare earth ions provide an extra decay channel which changes the decay curves, such as Tb3+(5D3), Pr3+(1D2 and 3P0), Tm3+(1D2), Er3+(4S3/2), Sm3+(4G5/2) and Dy3+(4F9/2). The absence of 4f-5d luminescence in LaAlGe2O7: Ln3+ (Ln = Ce, Pr, Tb) have been ascribed to quenching by photoionization or offset, which implies that the lowest 5d level of Ln3+ lies in the conduction band of the host crystal. It is recognized that no efficient charge transfer state (CTS) band occurs in LaAlGe2O7: Ln3+ (Ln = Eu, Sm, Dy) may be due to the CTS band overlaps with the absorption band of the host or the weak covalency between Ln3+ and O2−.
    There were two kinds of efficient Gd3+ to Tb3+ energy transfer processes in terms of Tb3+ concentration: (1) multi-phonon relaxation, (2) cross-relaxation. When the Gd3+ to Tb3+ energy transfer includes the slow multi-phonon relaxation rate, a “grow-in” behavior of the decay curves could be observed. For high concentration Tb3+ doped samples, the fast cross-relaxation process is dominant, while only a simple exponential decay could be observed.
    All synthesized phosphors in this study could emit different colors by doping different kinds of activators, such as blue (Tm3+), green (Tb3+, Er3+, Pr3+), red (Eu3+, Sm3+), bluish white (Dy3+) and ultraviolet (Gd3+). One of the interesting results of this work is that the excitation wavelengths of the phosphors and the emission wavelengths of the LED (350 ~ 450 nm) have closely overlapped, which provides the potential as the LED converted phosphors in solid state lighting technology.

    摘 要 I Abstract III 誌 謝 V 目 錄 VI 表目錄 XII 圖目錄 XIII 符號說明 XXIII 第一章 序論 1 1-1 前言 1 1-2螢光材料發展與現況 2 1-3研究動機與目的 2 第二章 理論基礎與文獻回顧 5 2-1螢光材料簡介 5 2-1-1螢光材料的分類 5 2-1-2 激發源種類與應用 7 2-2發光機制簡介 8 2-2-1發光原理與過程 8 2-2-2發光(luminescence)、螢光(fluorescence)與磷光(phosphorescence) 9 2-2-3 組態座標圖(configuration coordination diagrams) 9 2-2-4 電子-聲子交互作用(electron-phonon interaction) 10 2-2-5 史托克位移(Stoke shift) 12 2-2-6能量轉移(Energy transfer) 12 2-2-6-1 能量遷徙(Energy migration) 12 2-2-6-2 交叉緩解(Cross-relaxation) 12 2-2-6-3 上轉換(Up-conversition)) 13 2-2-7 非輻射躍遷(non-radiative transition) 13 2-2-7-1 補償效應(offset effect) 13 2-2-7-2 光游離效應(photoionization effect) 14 2-3固態材料中的光致發光 14 2-3-1 本質型發光(intrinsic luminescence 14 2-3-2 外質型發光(extrinsic luminescence) 15 2-3-2-1 非侷限型(unlocalized type)發光材料 15 2-3-2-2 侷限型(localized type)發光材料 16 2-4 影響發光效率的因素 16 2-4-1 主體晶格(host) 16 2-4-2 毒劑現象(poisoning) 17 2-4-3 濃度淬滅(concentration quenching) 17 2-4-4 熱淬滅(thermal quenching) 18 2-5 螢光材料的組成與選擇 18 2-6 RMGe2O7 (R = rare earth ions, M = Al3+, Ga3+,Fe3+)晶體簡介 19 第三章 實驗方法與步驟 31 3-1 實驗概述 31 3-2 起始材料 31 3-3 實驗方法 31 3-4 實驗流程 34 3-4-1 LaAlGe2O7: Ln3+ (Ln = Sm, Eu, Gd, Dy, Er, Tm)螢光粉體製備 34 3-4-2 LaAlGe2O7: Ln3+ ((Ln = Ce, Pr, Tb)螢光粉體製備 34 3-5 成份與結構分析 33 3-5-1 X光繞射分析(X-ray diffraction, XRD) 33 3-5-2 掃描式電子顯微鏡(scanning electron microscopy, SEM)分析 33 3-5-3熱差/熱重分析(differential thermal and thermogravimetry analysis, DTA-TGA) 33 3-6 光學特性分析 33 3-6-1螢光特性量測 33 3-6-2吸收光譜(absorption spectrum) 34 3-6-3 色度量測 35 第四章 結果與討論 40 4-1 固相反應法合成LaAlGe2O7 40 4-1-1 熱重-熱差(DTA-TGA)分析 40 4-1-2 X光繞射(XRD)分析 40 4-1-3 掃描示電子顯微鏡(SEM)分析 41 4-1-4 吸收光譜(absorption spectrum)分析 41 4-1-5 結論 42 4-2 LaAlGe2O7: Eu3+螢光體 49 4-2-1 Eu3+摻雜濃度對結構的影響 49 4-2-2 SEM分析 49 4-2-3 光譜分析 49 4-2-3-1 激發、發射與吸收光譜 49 4-2-3-2 煆燒溫度對發光的影響 51 4-2-3-3 Eu3+摻雜濃度對發光的影響 52 4-2-3-4 光致發光的衰減現象 53 4-2-3-5 發光效率 54 4-2-4 結 論 54 4-3 LaAlGe2O7: Tb3+螢光體 65 4-3-1 Tb3+摻雜濃度對結構的影響 65 4-3-2 SEM分析 65 4-3-3 光譜分析 65 4-3-3-1 激發與吸收光譜 65 4-3-3-2 發射光譜 66 4-3-3-3 還原氣氛對LaAlGe2O7: Tb3+螢光特性的影響 67 4-3-4 Tb3+摻雜濃度對5D37FJ的影響 67 4-3-5 Tb3+摻雜濃度對5D47FJ的影響 68 4-3-5 發光效率 68 4-3-6 結 論 69 4-4 LaAlGe2O7: Pr3+螢光體 86 4-4-1 Pr3+摻雜濃度對結構的影響 86 4-4-2 發射光譜 86 4-4-3 激發與吸收光譜 87 4-4-4 結論 88 4-5 LaAlGe2O7: Ce3+螢光體 98 4-6 LaAlGe2O7: Tm3+螢光體 101 4-6-1 Tm3+摻雜濃度對結構的影響 101 4-6-2 吸收光譜 101 4-6-3 激發與發射光譜 101 4-6-4 Tm3+摻雜濃度對發光強度的影響 102 4-6-5 光致發光的衰減現象 102 4-6-6 CIE色度座標( CIE chromaticity coordinate) 103 4-6-7 結論 103 4-7 LaAlGe2O7: Er3+螢光體 111 4-7-1 Er3+摻雜濃度對結構的影響 111 4-7-2 吸收光譜 111 4-7-3 激發與發射光譜 111 4-7-4 Er3+摻雜濃度對發光強度的影響 111 4-7-5 CIE色度座標( CIE chromaticity coordinate) 112 4-7-6 結論 112 4-8 LaAlGe2O7: Sm3+螢光體 119 4-8-1 Sm3+摻雜濃度對結構的影響 119 4-8-2 光譜分析 119 4-8-2-1 激發、發射與吸收光譜 119 4-8-2-2 Sm3+摻雜濃度對發光的影響 120 4-8-3 光致發光的衰減現象 120 4-8-4 結論 120 4-9 LaAlGe2O7: Dy3+螢光體 126 4-9-1 Dy3+摻雜濃度對結構的影響 126 4-9-2 光譜分析 126 4-9-2-1 激發、發射與吸收光譜 126 4-9-2-2 Dy3+摻雜濃度對發光的影響 127 4-9-3 光致發光的衰減現象 127 4-9-4 結論 127 4-10 Gd3+離子摻雜對LaAlGe2O7: Tb3+螢光特性之影響 134 4-10-1 Gd3+離子螢光特性 134 4-10-2 LaAlGe2O7: Gd3+, Tb3+螢光特性 134 4-10-2-1 激發光譜 134 4-10-2-2 發射光譜 135 4-10-3 光致發光的衰減現象 136 4-10-3-1 Tb3+摻雜濃度對5D37FJ的影響 136 4-10-3-2 Tb3+摻雜濃度對5D47FJ的影響 136 4-10-4 結論 138 4-11 綜合討論 148 4-11-1 發光特性分析 148 4-11-2 發光色度及應用 149 4-11-3 LaAlGe2O7: Eu3+, Tb3+, Tm3+螢光體 149 第五章 總結論 158 未來展望 159 參考文獻 160

    楊素華,“螢光粉在發光上的應用”,科學發展 358期,(2002) 67。
    . C. Feldmann, T. Jüstel, C. R. Ronda and P. J. Schmidt, “Inorganic luminescencent materials: 100 years of research and application”, Adv. Funct. Mater., 13(7) (2003) 511.
    . 劉如熹、王健源,“白光發光二極體用製作技術”,全華科技,(2001)。
    . 劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,全華科技,(2003)。
    . 莊賦祥,“藍綠光發光二極體“,科學發展349期,(2002) 46。
    . C. Duan, J. Yuan, X. Yang, J. Zhao, Y. Fu, G. Zhang, Z. Qi and Z. Shi, “Luminescent properties of REBa3B9O18 (RE = Lu, Tb, Gd, Eu) under VUV excitation”, J. Phys.D: Appl. Phys., “ 38 (2005) 3576.
    . A. Komeno, K. Uematsu, K. Toda and M. Sato, “VUV properties of Eu-doped alkaline earth magnesium silicate”, J. Alloys Comp., 408-412 (2006) 871.
    . A. H. Kitai, “Oxide phosphor and dielectric thin films for electroluminescent devices”, Thin Solid Films, 445 (2003) 367.
    . V. Sivakumar and U. V. Vardaraju, “Intense red-emitting phosphors for white light emitting diodes”, J. Electrochem. Soc., 152 (10) (2005) H168.
    . S. Shionoya and W. M. Yen, “Phosphor Handbook”, CRC press (1999).
    . O. A. Lopez, J. McKittric, L. E. Shea, “Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges”, J. Lumin. 71 (1997) 1.
    . H. Yamamoto, M. Mikami, Y. Shimomura and Y. Oguri, “Host-to-activator energy transfer in a new blue-emitting phosphor SrHfO3:Tm3+”, J. Lumin., 87-89 (2000) 1079.
    . S. Itoh, M. Yokoyama and K. Morimoto, “Poisonous gas effects on the emission of oxide-coated cathodes”, J. Vac. Sci. Technol., A 5 (1987) 3430.
    . S. Itoh, T. Kimizuka and T. Tonegawa, “Degradation mechanism for low-voltage cathodoluminescence of sulfide phosphors”, J. Electrochem. Soc., 136 (1989) 1819.
    . P. Guo, F. Zhao, G. Li, F. Liao, S. Tian, and X. Jing, “Novel phosphors of Eu3+, Tb3+ or Bi3+ activated Gd2GeO5”, J. Lumin. 105 (2003) 61.
    . K. N. Kim, H.K. Jung, H. D. Park and D. Kim, “High luminance of new green emitting phosphor, Mg2SnO4: Mn”, J. Lumin., 99 (2002) 169.
    . L. D. Carlos, V. de Zea Bermudez and R. A. Sá Ferreira, “Multi-wavelength europium-based hybrid phosphors”, J. Non-Cryst. Solids, 247 (1999) 203.
    . F. S. Liu, B. J. Sun, J. K. Liang, Q. L. Liu, J. Luo, Y. Zhang, L. X. Wang, J. N. Yao and G. H. Rao, “Optical properties of (Y1−xTmx)3GaO6 and subsolidus phase relation of Y2O3–Ga2O3–Tm2O3”, J. Solid State Chem. 178 (2005)1064.
    . E. Danielson, J.H. Golden, E.W. McFarland, C.M. Reaves, W.H. Weinberg and X.D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials”, Nature, 389 (1997) 944.
    . Z.G. Wei, L.D. Sun, C.S. Liao and C.H. Yan, “Fluorescence intensity and color purity improvement in nanosized YBO3:Eu”, Appl. Phys. Lett., 80(8) (2002) 1447.
    . Z. Yu, X. Huang, W. Zhuang, X. Cui and H. Li, “Crystal structure transformation and luminescent behavior of the red phosphor for plasma display panels”, J. Alloy Compd., 390 (2005) 220.
    . G. Blasse, “Handbook on the Physics and Chemistry of Rare Earths” Vol.4, North-Holland, (1979).
    . T. Hoshina, “Luminescence of Rare Earth Ions”, Sony Research Center Rep., (1983).
    . G. Blasse and B. C. Grabmaier, “Luminescent Materials”, Springer-Verlag, (1994).
    . 蔡濱祥,尖晶石(MgxZn1-x)(In2-yGay)O4: Eu3+, Tb3+螢光粉體製備及其光致發光特性研究,國立成功大學材料科學及工程學系博士論文,民國94年。
    . 陳俞仲,錫酸鹽M2SnO4(M=Ca, Sr, Zn)螢光粉之合成與螢光特性研究,國立成功大學材料科學及工程學系博士論文,民國94年。
    . 林育鋒,硫化物半導體Ba2ZnS3為基質之螢光粉體製備及其光致發光特性研究,國立成功大學材料科學及工程學系博士論文,民國95年。
    . H. S. Nalwa, L. S. Rohwer, A. J. Heeger and N. Laureate, Handbook of Luminescence, Display Materials, and Devices – Inorganic Display Materials, American Scientific Publishers, (2003).
    . A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics”, Progress in Quantum Electronics, 26 (2002) 225.
    . D. L. Dexter, “A theory of sensitized luminescence in solids”, J. Chem. Phys. 21 (1953) 836.
    . B. Henderson and G.F. Imbusch, “Optical Spectroscopy of Inorganic Solids”, Clarendon, Oxford, (1989).
    . B. DiBartolo, “Energy Transfer Process in Condensed Matter”, Plenum, New York (1984).
    . G. Blasse, K. C. Bleijenberg and R. C. Powell, “Luminescence and Energy Transfer” Springer-Verlag, New York (1980).
    . A. H. Kitai, “Solid State Luminescence”, Chapman & Hall, Londonp, (1993).
    . G. Blasse, W. Schipper and J. J. Hamelink, “On the quenching of the luminescence of the trivalent cerium ion”, Inorg. Chim. Acta, 189 (1991) 77.
    . G. Blasse, C. de Mello Donegá, N. Efryushina, V. Dotsenko and I. Berezovskaya, “Luminescence of Pr3+ in indium borate (InBO3)”, Solid State Commun., 92(8) (1994) 687.
    . D. R. Vij, “Luminescence of solids”, Plenum Press, New York, (1998).
    . P. Atkins, L. Jones, “Chemistry molecules, Matter, and Change” 3rd edition, (1997).
    . R. C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publishers, The Netherlands, (1991).
    . O. Jarchow, K. –H. Klaska, H. Schenk, “ReAlGe2O7, neue Verbindungen der Aluminium-Germanate Seltener Erden”, Naturwissenschaften., 68 (1981) 475.
    . O. Jarchow, K. –H. Klaska, H. Schenk-Strauss, “Die Kristallstrukturen von NdAlGe2O7 und NdGaGe2O7”, Z. Kristallogr., 172 (1985) 159.
    . A. A. Kaminskii, B. V. Mill, A. V. Butashin, E. L. Belokoneva, K. Kurbanov, “Germanates with NdAlGe2O7-type structure”, Phys. Stat. Sol. (a)., 103 (1987) 575.
    . G. Lozano, C. Cascales, C. Zaldo and P. Porcher, “Measurement and simulation of the energy levels of R=Pr3+ and Nd3+ in GaRGe2O7”, J. Alloys Comp., 303-304 (2000) 349.
    . C. Cascales, G. Lozano , C. Zaldo and P. Porcher, “Optical spectroscopy andcrystal-field effects on the paramagnetic susceptibility of rare-earth germinates GaRGe2O7, R = Pr, Nd”, Chem. Phys., 257 (2000) 29.
    . E. A. Juarez-Arellano, J. Campa-Molina, S. Ulloa-Godinez, L. Bucio and E. Orozco, “Crystallochemistry of thortveitite-like and thortveitite-type compound”, Mater. Res. Soc. Symp. Proc., 848 (2005) 293.
    . K. Tkacova, “Mechanical activation of minerals”, Elsevier, Amsterdam, (1989).
    . D. P. Poulios, J. P. Spoonhower, and N. P. Bigelow, “Influence of oxygen deficiencies and hydrogen-loading on defect luminescence in irradiated Ge-doped silica glasses”, J. Lumin., 101 (2003) 23.
    . H. Shigemura, Y. Kawamoto, J. Nishii and M. Takahashi, “Ultraviolet photosensitive effect of sol–gel-derived GeO2–SiO2 glasses”, J. Appl. Phys., 85 (1999) 3413.
    . M. Kahketsu, L. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence in VAD SiO2:GeO2 glasses sintered under reducing or oxidizing conditions “, Jpn. J. Appl. Phys., 28 (1989) 622.
    . G. Blasse, “On the Eu3+ fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+-activated oxides”, J. Chem. Phys., 45(7) (1966) 2356.
    . R. Schmechel, M. Kennedy, H. von Seggern, H. Winkler, M. Kolbe, R. A. Fischer, X. M. Li, A. Benker, M. Winterer and H. Hahn, “Luminescence properties of nanocrystalline Y2O3:Eu3+ in different host materials”, J. Appl. Phys., 89 (2001) 1679.
    . J. K. Park, J. I. Ahn, M. A. Lim, HC. H. Kim, H. D. Park and S. Y. Choi, “Photoluminescence properties of Eu3+-activated Y2GeO5 phosphors”, J. Electrochem. Soc., 150 (8) (2003) H187.
    . S.K. Shi and J.Y. Wang, “Combustion synthesis of Eu3+ activated Y3Al5O12 phosphor nanoparticles”, J. Alloy Compd., 327 (2001) 82.
    . F. Shi, J. Meng, Y. Ren and Q. Su, “Structure, luminescence and magnetic properties of AgLnW2O8 (Ln = Eu, Gd, Tb AND Dy) compounds”, J. Phys. Chem. Solids, 59 (1998) 105.
    . T. Igarashi, M. Ihara, T. Kusunoki and K. Ohno, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor”, Appl. Phys. Lett., 76 (2000) 1549.
    . B. S. Tsai, Y. H. Chang and Y. C. Chen, “Synthesis and luminescent properties of MgIn2–xGaxO4:Eu3+ phosphors”, Electrochem. Solid-State Lett., 8(7) (2005) H55.
    . S. Freed, “Spectra of ions in fields of various symmetry in crystals and solutions”, Rev. Mod. Phys., 14 (1942) 105.
    . C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides”, Mol. Phys., 8 (1964) 281.
    . J. Blanc and D. L. Ross, “Polarized absorption and emission in an octacoordinate chelate of Eu3 +”, J. Chem. Phys., 43 (1965) 1286.
    . B. R. Judd, “Hypersensitive transitions in rare-earth ions”, J. Chem. Phys., 44 (1966) 839.
    . B. R. Judd, “Optical absorption intensities of rare-earth ions”, Phys. Rev., 127 (1962) 750.
    . G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions”, J. Chem. Phys., 37 (1962) 511.
    . S. Polizzi, M. Battagliarin, M. Bettinelli, A. Speghini and G. Gagherazzi, “Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis”, J. Mater. Chem., 12 (2002) 742.
    . W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in oxide glasses : Dependence of the emission spectrum upon glass composition”, J. Non-Cryst. Solids, 111 (1989) 205.
    . R. Schmechel,, H. Winkler, L. Xaomao, M. Kennedy, M. Kolbe, A. Benker, M. Winterer, R. A. Fischer, H. Hahn, and H. von Seggern, “Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environments”, Scripta Mater. 44 (2001) 1213.
    . G. Blasse, “ Energy transfer in oxiidic phosphors”, Philips Res. Rep., 24 (1969) 131.
    . M. Inokuti, and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence”, J. Chem. Phys., 43 (1965) 1978.
    . J.P.bRainho, D.bAnanias, Z. Lin, A. Ferreira, L.D. Carlos and J. Rocha, “Photoluminescence and local structure of Eu(III)-doped zirconium silicates”, J. Alloys Comp., 374 (2004) 185
    . A. Mayolet, W. Zhang, E. Simoni, J. C. Krupa and P. Martin, “Investigation in the VUV range of the excitation efficiency of the Tb3+ ion luminescence in Y3(Alx,Gay)5O12 host lattices”, Opt. Mater., 4 (1995) 757.
    . Y. C. Kang, I. W. Lenggoro, K. Okuyamaa and S. B. Park, “Luminescence characteristics of Y2SiO5:Tb phosphor particles directly prepared by the spray pyrolysis method”, J. Electrochem. Soc., 146 (3) (1999) 1227.
    . K. S. Sohn, J. M. Lee, I. W. Jeon and H. D. Park,“Combinatorial searching for Tb3+-activated phosphors of high efficiency at vacuum UV excitation”, J. Electrochem. Soc., 150 (8) (2003) H182.
    . C. H. Kam and S. Buddhudu, “Luminescence and decay behaviour of Tb3+:ZrF4–BaF2–LaF3–YF3–AlF3–NaF optical glasses”, Physica B, 337 (2003) 237.
    . C. E. Bonner Jr., P. M. Mwangi, S. J. Creekmore, L. J. Richardson, S. Stefanos, G. B. Loutts and B. Walsh, “A spectroscopic and Judd–Ofelt analysis of the relaxation dynamics of Tm3+ in the fluorapatites, FAP, S-FAP, and B-FAP”, Opt. Mater., 20 (2002) 1.
    . K. S. Sohn, Y. G. Choi, Y. Y. Choi and H. D. Park, “Energy transfer between Tb3+ ions in YAlO3 host”, J. Electrochem. Soc., 147 (9) (2000) 3552.
    . J. K. Park, C. H. Kim, C. H. Han, H. D. Park and S. Y. Choi, “Luminescence properties of GdOBr:Tb green phosphors”, Electrochem. Solid-State Lett, 6(7) (2003) H13.
    . B. Di Bartolo and B.E. Bowlby, “Spectroscopic properties of trivalent praseodymium in barium yttrium fluoride”, J. Lumin., 102-103 (2003) 481.
    . A. Jouini, J.C. Gâcon, M. Ferid and M. Trabelsi-Ayadi, “Luminescence and scintillation properties of praseodymium poly and diphosphates”, Opt. Mater., 24 (2003) 175.
    . Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long and W. E. Collins, “Infrared to visible upconversion in Er3+-doped-lead-germanate glass: Effects of Er3+ ion concentration”, J. Appl. Phys., 77(9) (1995) 4688.
    . M. B. Lee, J. H. Lee, B. G. Frederick, and N. V. Richardson, “Surface structure of ultra-thin A12O3 films on metal substrates”, Surf. Sci., 448 (2000) L207.
    . R. Buisson, R. Chicault, F. Madeore, M. Polirier and J. C. Vial, “Direct detection of phonons created by a quenching process in LaF3:Pr3+”, Solid State Comm., 42 (1982) 157.
    . I. Sokólska, S. Golab, M. Baluka and W. Ryba-Romanowski, “Quenching of Pr3+ emission in single crystals of K5PrxLa1−xLi2F10”, J. Lumin., 91 (2000) 79.
    . H. E. Hoefdraad and G. Blasse, “Green emitting praseodymium in calcium zirconate”, Phys. Stat. Sol. (a), 29 (1975) K95.
    . C. D. M. Donega, A. Meijerink and G. Blasse, “Non-radiative relaxation processes of the Pr3+ ion in solids”, J. Phys. Chem. Solids, 56 (1995) 673.
    . P. Dorenbos, “The 4fn↔4fn−15d transitions of the trivalent lanthanides in halogenides and chalcogenides”, J. Lumin., 91 (2000) 91.
    . S. M. Loureiro, A. Setlur, W. Heware, S. T. Taylor, H. Comanzo, M. Manoharan, A. Srivastava, P. Schmidy and A. Srivastava, “First observation of quantum splitting behavior in nanocrystalline SrAl12O19:Pr, Mg phosphor”, Chem. Mater., 17 (2005) 3108.
    . T. Gaewdang, J. P. Chaminade, A Garcia, M. Pouchard, P. Hagenmuller and B. Jacquier, “Luminescence of Ce3+ in the InxSC1−xB03 (0≤x≤1) solid solution”, J. Phys. Chem. Solids, 55 (1994) 501.
    . R. Reisfeld, “Structure and Bounding”, Vol. 22, Springer-Verlag, New York (1975).
    . C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Luthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts”, J. Lumin., 82 (1999) 137.
    . I. Avgin and D. L. Huber, “Fluorescence dynamics in 1D systems with phonon-assisted energy transfer”, J. Lumin., 83-84 (1999) 193.
    . J. Hao, S. A. Studenikin and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis”, J. Lumin., 93 (2001) 313.
    . J. Hao and M. Cocivera, “Cathodoluminescence of Sr2B5O9Cl thin films doped with Tm3+, Tb3+ and Mn2+”, J. Phys.: Condens. Matter, 4 (2002) 925.
    . J. Hao, J. Gao and M. Cocivera, “Green, blue, and yellow cathodoluminescence of Ba2B5O9Cl thin-films doped with Tb3+, Tm3+, and Mn2+”, Appl. Phys. Lett., 82(14) (2003) 2224.
    . T. L Jüstel, H. Nikol and C. R. Ronda, “New developments in the field of luminescent materials for lighting and displays”, Angew. Chem. Int. Ed., 37 (1998) 3085.
    . C. R. Ronda, “Recent achievements in research on phosphors for lamps and displays”, J. Lumin., 72-74 (1997) 49.
    . C.M. Nascimento and M.J.V. Bell, “Reverse saturable absorption in Er3+ doped systems”, J. Non-Cryst. Solids, 348 (2004) 90.
    . H. X. Zhang, S. Buddhudu, C. H. Kam, Y. Zhou, Y. L. Lam, K. S. Wong, B. S. Ooi, S. L. Ng and W. X. Que, “Luminescence of Eu3+ and Tb3+ doped Zn2SiO4 nanometer powder phosphors”, Mater. Chem. Phys., 68 (2001) 31.
    . C. H. Chang, B. S. Chiou, K. S. Chen, C. C. Ho and J. C. Ha, “The effect of In2O3 conductive coating on the luminescence and zeta potential of ZnS:Cu, Al phosphors”, Ceram. Int., 31 (2005) 635.
    . Y. Nakanishi, K. Kimura, H. Kominami, H. Nakajima, Y. Hatanaka and G. Shimaoka, “Dependence of structural and luminescent characteristics of Y2O3:Er thin film phosphors on substrate”, Appl. Surf. Sci., 212–213 (2003) 815.
    . G. Blasse and G. J. Dirksen, “A simple luminescence experiment suggesting rare earth ion pairing in the fluorite structure”. J. Electrochem. Soc., 127 (4) (1980) 978.
    . J. Kuang, Y. Liu and J. Zhang, “White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3”, J. Solid State Chem., 179 (2005) 266.
    . L. Nagli, D. Bunimovich, A. Katzir, O. Gorodetsky and V. Molev, “The luminescence properties of Dy-doped high silicate glass”, J. Non-cryst. Solids, 217 (1997) 208.
    . J. Shmulovich, G. W. Berkstresser, C. D. Brandle and A. Valentino, “Single-crystal rare-earth-doped yttrium orthosilicate phosphors”, J. Electrochem. Soc., 135 (12) (1988) 3141.
    . H. Y. D. Ke and E. R. Birnbaum, “Many-body nonradiative energy transfer in a crystalline europium (III) EDTA complex”, J. Lumin., 63 (1995) 9.
    . D. Ananias, M. Kostova, F. A. A. Paz, A. Ferreira, L. D. Carlos, J. Klinowski and J. Rocha, “Photoluminescent layered lanthanide silicates”, J. Am. Chem. Soc., 126 (2004) 10410.
    . R. Reisfeld, E. Greenberg, R. Velapold and, B. Barnett, “Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them”, J. Chem. Phys., 56 (1973) 1698.
    . P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass”, J. Phys. Chem. Solids, 64 (2003) 841.

    下載圖示 校內:2011-07-11公開
    校外:2012-07-11公開
    QR CODE