簡易檢索 / 詳目顯示

研究生: 莊烱揚
Chuang, Chiung-Yang
論文名稱: 應用水滴模板法製作具圖案化奈米結構非晶矽薄膜太陽能電池之特性改善
Performance Improvement of a-Si Thin Film Solar Cells with Patterned Nanostructure by Using Water Droplets Template Method
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 75
中文關鍵詞: 非晶矽水滴模板法水熱法奈米柱電漿增強式化學氣相沉積系統太陽能電池氧化鋅
外文關鍵詞: Amorphous silicon, Droplets template method, Hydrothermal method, Nanorod, PECVD, Solar cell, Zinc oxide
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,使用電漿增強式化學氣相沉積系統製作具圖案化奈米結構之非晶矽太陽能電池,其中奈米結構是採用水熱法成長氧化鋅奈米柱方式製作,而水滴模板法則是用來定義奈米結構之圖案,在傳統的非晶矽太陽能電池中,為使其有較高之短路電流密度,光生載子的吸收厚度與其傳輸距離必須匹配,因此吸收厚度將會受到侷限,而圖案化奈米結構之非晶矽太陽能電池其奈米結構之側壁比起傳統的非晶矽太陽能電池具有較大的吸收面積,並且奈米結構側壁光生載子的傳輸方向垂直入射光之方向,因此它可以同時取得較大的吸收面積和較低的傳輸路徑,此外,圖案化的奈米結構之非晶矽太陽能電池比起傳統的非晶矽太陽能電池有較低的反射率,由於入射光吸收的增加,使得短路電流密度從11.31 mA/cm2增加至18.34 mA/cm2,傳統的非晶矽太陽能電池的轉換效率為5.78%,而圖案化奈米結構之非晶矽太陽能電池的轉換效率將被改善至8.10%,顯著改善太陽能電池元件的轉換效率。

    In this study, the amorphous Si solar cells with patterned nanostructure were fabricated using Plasma-Enhanced Chemical Vapor Deposition system (PECVD). The nanostructure is the ZnO nanorods grown using the hydrothermal method. The water droplets template method was used to define the growth pattern of nanostructure. In order to make the higher short-circuit current density for the conventional amorphous Si solar cells, absorption thickness is match with the transport distance of the photo-generated carriers. Thus, the absorption thickness was limited. The amorphous Si solar cells with patterned nanostructure have a larger absorption region in the nanostructure sidewall than the conventional amorphous Si solar cells. The transport direction of the photo-generated carriers in the nanostructure sidewall was vertical to the direction of the incident light, thus it could be obtained the larger absorption area and the lower transport path at the same time. Besides, the reflectance of the amorphous Si solar cells with patterned nanostructure could be decreased in comparison with that of the conventional amorphous Si solar cells. The associated short-circuit current density was increased from 11.31 mA/cm2 to 18.34 mA/cm2 when the absorption of the incident light increases. The conversion efficiency of the solar cells was significantly improved from 5.78% of the conventional amorphous Si solar cells to 8.10% of the amorphous Si solar cells with patterned nanostructure.

    目錄 摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI 第一章 序論 1 1.1 前言 1 1.2 研究動機 2 參考文獻 3 第二章 實驗原理簡介及量測儀器介紹 6 2.1 水滴模板成長機制 6 2.2 水熱法成長機制 7 2.3 太陽能電池工作原理 9 2.3.1 光電基本轉換原理 9 2.3.2 短路電流 9 2.3.3 開路電壓 10 2.3.4 填充因子 11 2.3.5 轉換效率 11 2.3.6 串、並聯電阻 12 2.3.7 太陽光譜 13 2.4 矽薄膜沉積系統及沉積方式簡介 14 2.4.1 電漿增強式化學氣相沉積系統 14 2.4.2 化學氣相沉積原理 15 2.5 量測儀器 16 2.5.1 UV-VIS-NIR光譜分析儀 16 2.5.2 轉換效率量測系統 16 2.5.3 掃描式電子顯微鏡 17 2.5.4 量子效率量測系統 17 參考文獻 18 第三章 元件製程 28 3.1 圖案化奈米結構之矽薄膜太陽能電池之製作流程 28 3.1.1 清潔玻璃基板 28 3.1.2 製作圖案化奈米結構 29 3.1.3 蒸鍍鋁電極 31 3.1.4 沉積n-i-p矽薄膜 31 3.1.5 濺鍍銦錫氧化物透明導電膜 33 第四章 圖案化奈米結構探討及太陽能電池元件量測分析 38 4.1 圖案化奈米結構分析 38 4.1.1 探討濃度對圖案化奈米結構之影響 38 4.1.2 探討轉速對圖案化奈米結構之影響 39 4.1.3 探討水摻雜量對圖案化奈米結構之影響 40 4.1.4 圖案化氧化鋅奈米結構結果分析 41 4.2 圖案化奈米結構之矽薄膜太陽能電池 42 4.2.1 不同高度圖案化奈米結構之矽薄膜太陽能電池 42 4.2.1.1 矽薄膜吸收率分析及計算 42 4.2.1.2 不同高度太陽能電池元件之掃描式電子顯微鏡 43 4.2.1.3 不同高度太陽能電池元件反射量測 44 4.2.1.4 不同高度太陽能電池元件轉換效率量測 44 4.2.1.5 不同高度太陽能電池元件暗電流量測 45 4.2.1.6 不同高度太陽能電池元件外部量子效率量測 45 4.2.2 不同密度圖案化奈米結構之矽薄膜太陽能電池 46 4.2.2.1 不同密度太陽能電池元件之掃描式電子顯微鏡 46 4.2.2.2 不同密度太陽能電池元件側壁吸收層面積計算 46 4.2.2.3 不同密度太陽能電池元件反射量測 47 4.2.2.4 不同密度太陽能電池元件轉換效率量測 48 4.2.2.5 不同密度太陽能電池元件暗電流量測 49 4.2.2.6 不同密度太陽能電池元件外部量子效率量測 49 4.3 平坦、奈米柱及圖案化奈米結構之矽薄膜太陽能電池 51 4.3.1 不同結構太陽能電池元件反射量測 51 4.3.2 不同結構太陽能電池元件轉換效率量測 52 4.3.3 不同結構太陽能電池元件漏電流量測 53 4.3.4 不同結構太陽能電池元件外部量子效率量測 53 參考文獻 54 第五章 結論 75

    [1] 戴寶通、鄭晃忠,《太陽能電池技術手冊》,台灣電子材料與元件協會發行出版。
    [2] 華健、吳怡萱,《再生能源概論》,五南圖書出版公司。
    [3] 翁敏航,《太陽能電池―原理、元件、材料、製程與檢測技術》,東華書局股份有限公司。
    [4] 莊嘉琛,《太陽能工程-太陽能電池篇》,全華科技圖書股份有限公司。
    [5] Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, M. D. Vece, and R. E. I. Schropp, “Design and photovoltaic performance of nanorod solar cells with amorphous silicon absorber layer thickness of only 25 nm”, IEEE, pp. 802-806 (2011).
    [6] B. M. Kayes, and H. A. Atwatera, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells”, Appl. Phys. , vol. 97, issue 11, pp. 114302-114302-11 (2005).
    [7] J. M. Spurgeon, H. A. Atwater, and N. S. Lewis, “A comparison between the behavior of nanorod array and planar Cd(Se, Te) photoelectrodes”, J. Phys. Chem. C, vol. 112, issue 15, pp. 6186-6193 (2008).
    [8] M. S. Park, and J. K. Kim, “Breath figure patterns prepared by spin coating in a dry environment”, Langmuir, vol. 20, issue 13, pp. 5347-5352 (2004).
    [9] B. J. Briscoe, and K. P. Galvin, “An experimental study of the growth of breath figures”, Colloids and Surfaces, vol. 56, pp. 263-278 (1991).
    [10] G. Widawski, M. Rawiso, and B. François, “Self-organized honeycomb morphology of star-polymer polystyrene films”, Nature, vol. 369, pp. 387-389 (1994).
    [11] B. François, O. Pitois, and J. François, “Polymer films with a self-organized honeycomb morphology”, Adv. Mater. , vol. 7, issue 12, pp. 1041-1044 (1995).
    [12] O. Pitois, and B. Françis, “Formation of ordered micro-porous membranes”, Eur. Phys. J. B, vol. 8, issue 2, pp. 225-231 (1999).
    [13] O. Pitois, and B. François, “Crystallization of condensation droplets on a liquid surface”, Colloid Polym. Sci. , vol. 277, issue 6, pp. 574-578 (1999).
    [14] C. T. Kuo, Y. S. Lin, T. K. Liu, H. C. Liu, W. C. Hung, I. M. Jiang, M. S. Tsai, C. C. Hsu, and C. Y. Wu, ”Dynamics of single-layer polymer breath figures”, Optical Society of America, vol. 18, issue 17, pp. 18464-18470 (2010).
    [15] W. Madej, A. Budkowski, J. Raczkowska, and J. Rysz, “Breath figures in polymer and polymer blend films spin-coated in dry and humid ambience”, Langmuir, vol. 24, issue 7, pp. 3517-3524 (2008).
    [16] M. Huh, M. H. Jung, Y. S. Park, T. B. Kang, C. Nah, R. A. Russell, P. J. Holden, and S. I. Yun, “Fabrication of honeycomb-structured porous films from poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) via the breath figures method”, Polym. Eng. Sci., vol. 52, issue 4, pp. 920-926 (2011).
    [17] W. Dong, Y. Zhou, D. Yan, Y. Mai, L. He, and C. Jin, “Honeycomb-structured microporous films made from hyperbranched polymers by the breath figure method”, Langmuir, vol. 25, issue 1, pp. 173-178 (2009).
    [18] J. Peng, Y. Han, Y. Yang, and B. Li, “The influencing factors on the macroporous formation in polymer films by water droplet templating”, Polymer, vol. 45, issue 2, pp. 447–452 (2004).
    [19] Y. Sun, D. J. Riley, and M. N. R. Ashfold, “Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates”, J. Phys. Chem. B, 110, 15186-15192 (2006).
    [20] D. S. Boyle, K. Govender, and P. O’Brien, “Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: substrate effects and evidence of the importance of counter-ions in the control of crystallite growth”, Chem. Commun. , 80-81 (2002).
    [21] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, J. Mater. Chem. , 14, 2575-2591 (2004).
    [22] K. Govender, D. S. Boyle, P. O'Brien, D. Binks, D. West, and D. Coleman, “Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition”, Adv. Mater. , 14, No. 17, pp. 1221 (2002).
    [23] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice Hall (2001).
    [24] 張勁燕,《半導體製程設備》,五南圖書出版公司。
    [25] H. Xiao, Introduction to semiconductor manufacturing technology, Prentice Hall (2000).
    [26] B. T. Chen, “Investigation of the solvent-evaporation effect on spin coating of thin films”, Polym. Eng. Sci, vol 23, issue 7, pp. 399-403 (1983).
    [27] S. Xu, M. Li, Z. Mitov, and E. Kumacheva, “Surface textures induced by convection in thin film of polymeric and polymerizable fluids”, Progress in Organic Coatings, vol. 48, issue 2-4, pp. 227–235 (2003).
    [28] S. M. Sze, Semiconductor Devices: Physics and Technology 2nd ed. , Wiley, pp. 323 (2001).

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE