| 研究生: |
林宗錡 Lin, Tsung-Chi |
|---|---|
| 論文名稱: |
混合式複合材料之脫層分析 Delamination Fracture analysis of hybrid composites |
| 指導教授: |
胡潛濱
Hwu, Chyan-bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 界面裂縫 、脫層 、應力強度因子 、界面特殊邊界元素 、H積分 |
| 外文關鍵詞: | interface crack, delaminate, H-integral, special interface boundary element |
| 相關次數: | 點閱:62 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在破壞力學中應力強度因子為重要的參數。然而若想藉由界面裂縫的定義式求得應力強度因子並非容易之事,因為在裂縫尖端會有奇異性的行為,難以獲得穩定的物理量。因此在破壞力學中,與路徑無關的積分式極為重要,因為可以透過遠離尖端的路徑,減少裂縫尖端奇異行為的影響,而取得準確的應力強度因子,包含H積分亦是如此,而且H積分比其他積分式更能處理較為複雜的破壞問題,例如界面角或是界面裂縫。除此之外,若是選擇沿著材料體邊界為積分路徑,在邊界元素法的運算中,該路徑上的部分高斯點,有可能因為太靠近邊界節點而產生奇異積分的問題,因此將透過內插法規避奇異積分的運算,進而獲得準確的物理量。
本文將脫層視為界面裂縫問題,將利用界面特殊邊界元素模擬,而界面特殊邊界元素從一般邊界元素延伸而成,其對於相異材料交界處,已經自動滿足完美接觸的連續條件,在模擬界面裂縫問題時,不需對界面劃分元素,只需針對裂縫表面劃分元素即可。另外,考慮多層纖維排向相異的疊層板發生脫層問題時,可以利用等效混合理論,將多層疊層問題轉換成雙材料問題,以滿足界面特殊邊界元素的材料數量,即可對該問題進行模擬,之後搭配上H積分即可計算出應力強度因子。
透過不同的問題進行測試,包含雙材料界面裂縫、四層複材疊層板脫層問題或是十層複材疊層板脫層問題,而測試時使用圓形路徑與多邊形路徑進行H積分計算,最後所得結果也皆符合與路徑無關之特性。
In fracture mechanics, the stress intensity factors are an important parameter that can help us to know whether the material will fail. However, it is difficult to obtain the stress intensity factors through its definition because the crack tip has singular behavior that makes us cannot get the stable value of the stress near the tip. Therefore, there have many path-independent integrals in the fracture mechanics, H-integral included. H-integral is better than others to deal with complex problems, including interface wedge and interface crack. In addition to choosing the integral path that is along the material boundary, some gaussian points on the path will be close to the boundary nodes that make us encounter the singular integral. For the singular integral, we use the interpolation method to circumvent it and get the accurate displacement and stress.
The interface special boundary element extends from the normal boundary element and it satisfies the perfect bond condition for the interface between two dissimilar materials. It will reduce the time for simulating the problem because it only meshes the elements for the crack surface and needs not to mesh elements for the interface. Additionally, when considering an interface crack in the multilayer composite that each layer has different fiber orientations, we can equivalent the composite to two dissimilar materials by the equivalent theory which is used widely in composite mechanics. After equivalent, it can also calculate the stress intensity factors through the interface special boundary element and H-integral.
[1] Anderson TL. Fracture mechanics : fundamentals and applications. CRC Press; 1995.
[2] Michael J, Jan Z, Russell W. Fracture Mechanics : Fundamentals and Applications. CRC Press; 2004.
[3] Dundurs J. Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. Journal of Applied Mechanics, Transactions ASME 1964; 36(3): 650-651.
[4] Williams ML. The stresses around a fault or crack in dissimilar media. Bulletin of the Seismological Society of America 1959; 49: 199.
[5] England AH. A Crack Between Dissimilar Media. Journal of Applied Mechanics 1965; 32(2): 400-402.
[6] Erdogan F. Stress Distribution in Bonded Dissimilar Materials With Cracks. Journal of Applied Mechanics 1965; 32(2): 403-410.
[7] Rice JR, Sih GC. Plane Problems of Cracks in Dissimilar Media. Journal of Applied Mechanics 1965; 32(2): 418-423.
[8] Salganik RL, Malyshev BM. The strength of adhesive joints using the theory of cracks. International Journal of Fracture 1984; 26(4): 261-275.
[9] Ting CT. Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. International Journal of Solids and Structures 1986; 22(9): 965-983.
[10] Suo Z. Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1990; 427(1873): 331-358.
[11] Wu KC. Stress intensity factor and energy release rate for interfacial cracks between dissimilar anisotropic materials. Journal of Applied Mechanics, Transactions ASME 1990; 57(4): 882-886.
[12] Wu KC. Explicit solutions for interface cracks in anisotropic bimaterials. SIAM, Philadelphia, PA 1991.
[13] Wu KC. Explicit crack-tip fields of an extending interface crack in an anisotropic bimaterial. International Journal of Solids and Structures 1991; 27(4): 455-466.
[14] Hwu C. Fracture parameters for the orthotropic bimaterial interface cracks. Engineering Fracture Mechanics 1993; 45(1): 89-97.
[15] Rice JR. Elastic fracture mechanics concepts for interfacial cracks. Journal of Applied Mechanics, Transactions ASME 1988; 55(1): 98-103.
[16] Hutchinson JW, Suo Z. Mixed Mode Cracking in Layered Materials.Advances in Applied Mechanics 1991; 63-191.
[17] Comninou M. The interface crack. Journal of Applied Mechanics, Transactions ASME 1977; 44(4): 631-636.
[18] Comninou M. Interface crack in a shear field. Journal of Applied Mechanics, Transactions ASME 1978; 45(2): 287-290.
[19] Comninou M, Schmueser D. The interface crack in a combined tension-compression and shear field. Journal of Applied Mechanics, Transactions ASME 1979; 46(2): 345-348.
[20] Gautesen AK, Dundurs J. The interface crack under combined loading,. Journal of Applied Mechanics, Transactions ASME 1988; 55(3): 580-586.
[21] Gautesen AK, Dundurs J. The interface crack in a tension field. Journal of Applied Mechanics, Transactions ASME 1987; 54(1): 93-98.
[22] Leguillon D. Interface crack tip singularity with contact and friction. Singularite en pointe de fissure d'interface avec contact et frottement 1999; 327(5): 437-442.
[23] Audoly B. Asymptotic study of the interfacial crack with friction. Journal of the Mechanics and Physics of Solids 2000; 48(9): 1851-1864.
[24] Ko?vara M, Roubi?ek T, Mielke A. A rate-independent approach to the delamination problem. Mathematics and Mechanics of Solids 2006; 11(4): 423-447.
[25] Roubi?ek T, Scardia L, Zanini C. Quasistatic delamination problem. Continuum Mechanics & Thermodynamics 2009; 21(3): 223-235.
[26] Hillerborg A, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, Article 1976; 6(6): 773-781.
[27] Needleman A. A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, Transactions ASME 1987; 54(3): 525-531.
[28] Carpinteri A. Cusp catastrophe interpretation of fracture instability. Journal of the Mechanics and Physics of Solids 1989; 37(5): 567-582.
[29] Carpinteri A. Post-peak and post-bifurcation analysis of cohesive crack propagation. Engineering Fracture Mechanics 1989; 32(2): 265-278.
[30] Camacho GT, Ortiz M. Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures 1996; 33(20): 2899-2938.
[31] Maier G, Frangi A. Symmetric boundary element method for "discrete" crack modelling of fracture processes. Computer Assisted Mechanics and Engineering Sciences 1998; 5(3): 201-226.
[32] Camanho PP, De Moura MF, Davila CG. Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of Composite Materials 2003; 37(16): 1415-1438.
[33] Leguillon D. Strength or toughness? A criterion for crack onset at a notch. European Journal of Mechanics / A Solids 2002; 21(1): 61-72.
[34] Cornetti P, Pugno N, Carpinteri A, Taylor D. Finite fracture mechanics: A coupled stress and energy failure criterion. Engineering Fracture Mechanics 2006; 73(14): 2021-2033.
[35] Cornetti P, Manti? V, Carpinteri A. Finite Fracture Mechanics at elastic interfaces. International Journal of Solids and Structures 2012;49(7): 1022-1032.
[36] Whitcomb JD. Finite Element Analysis of Instability Related Delamination Growth. Journal of Composite Materials 1981; 15(5): 403-426.
[37] Rybicki EF, Hernandez TD, Deibler JE, Knight RC, Vinson SS. Mode I and Mixed Mode Energy Release Rate Values for Delamination of Graphite/Epoxy Test Specimens. Journal of Composite Materials 1987; 21(2): 105-123.
[38] Davidson BD, Kruger R, Konig M. Effect of stacking sequence on energy release rate distributions in multidirectional DCB and ENF specimens. Engineering Fracture Mechanics 1996; 55(4): 557-569.
[39] Krueger R, O'Brien TK. Shell/3D modeling technique for the analysis of delaminated composite laminates. Composites Part A: Applied Science and Manufacturing 2001; 32(1): 25-44.
[40] Aliabadi MH. Boundary element formulations in fracture mechanics. Applied Mechanics Reviews 1997; 50(2): 83-96.
[41] Zhang C, Gross D. A non?hypersingular time?domain BIEM for 3?D transient elastodynamic crack analysis. International Journal for Numerical Methods in Engineering 1993; 36(17): 2997-3017.
[42] Cruse TA. BIE fracture mechanics analysis: 25 years of developments. Computational Mechanics 1996; 18(1): 1-11.
[43] Zhang C, Cui M, Wang J, Gao XW, Sladek J, Sladek V, 3D crack analysis in functionally graded materials. Engineering Fracture Mechanics 2011; 78(3): 585-604.
[44] Snyder MD, Cruse TA. Boundary-integral equation analysis of cracked anisotropic plates. International Journal of Fracture 1975; 11(2): 315-328.
[45] Hwu C, and Yen WJ. Green's functions of two-dimensional anisotropic plates containing an elliptic hole. International Journal of Solids and Structures 1991; 27(13): 1705-1719.
[46] Shiah YC, Hwu C, Yao JJ. Boundary element analysis of the stress intensity factors of plane interface cracks between dissimilarly adjoined anisotropic materials. Engineering Analysis with Boundary Elements 2019; 106: 68-74.
[47] Tan CL, Gao YL, Afagh FF. Boundary element analysis of interface cracks between dissimilar anisotropic materials. International Journal of Solids and Structures 1992; 29(24): 3201-3220.
[48] Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 1964; 35(2): 379-388.
[49] Choi NY, Earmme YY. Evaluation of stress intensity factors in virvular shaped interfacial crack using L-integral. Mechanics of Materials 1992; 14(2): 141-153.
[50] Im S, Kim KS. An application of two-state M-integral for computing the intensity of the singular near-tip field for a generic wedge. Journal of the Mechanics and Physics of Solids 2000; 48(1): 129-151.
[51] Hwu C, Kuo TL. A unified definition for stress intensity factors of interface corners and cracks. International Journal of Solids and Structures 2007; 44(18): 6340-6359.
[52] Hwu C, Huang HY. Investigation of the stress intensity factors for interface corners. Engineering Fracture Mechanics 2012; 93: 204-224.
[53] Hwu C. Matrix form near tip solutions of interface corners. International Journal of Fracture 2012; 176(1): 1-16.
[54] 姚俊嘉, "轉折裂縫之應力強度因子計算," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2020.
[55] Hwu C. Anisotropic elasticity with Matlab. Springer; 2021.
[56] Hwu C. Anisotropic elastic plates. Springer; 2010.
[57] Hwu C, Ko HB, Lo TH, Hsu CW. Evaluation of singular integrals for anisotropic elastic boundary element analysis. Applied Mathematical Modelling 2020; 81: 128-143.
[58] Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook, 3rd. ASME Press; 2000.