簡易檢索 / 詳目顯示

研究生: 洪子頡
Hung, Tzu-Chieh
論文名稱: 多目標最佳設計與公差配置於單層與多層系統之整合
Multi-objective Design and Tolerance Allocation for Single- and Multi-Level Systems
指導教授: 詹魁元
Chan, Kuei-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 65
中文關鍵詞: 公差配置多目標最佳化穩健設計敏感度分析多層系統
外文關鍵詞: tolerance allocation, multiobjective optimization, robust design, sensitivity analysis, multilevel systems
相關次數: 點閱:123下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在提出一套處理多目標工程問題之變數設計與公差配置的方法。在現有文獻中,大 多數討論的焦點集中於如何在特定的公差配置下進行最佳設計,或是如何針對特定設計點進 行公差配置。若要針對一個系統之設計變數與公差進行同步設計,將導致系統的維度增加, 使得演算更加困難,此情況在多目標工程設計且系統模型相對複雜的問題中尤為明顯。本論 文提出一設計流程來獲得數個多目標設計最佳點,並依據各點性能受不確定因素影響之狀況 定義一影響範圍將其量化。藉由影響範圍量化方法,設計者能得知各個設計點之系統性能變 動情況。透過最佳影響範圍面積之計算,設計者能量化各個設計點之性能變動範圍大小;而 最佳影響範圍中沿多目標Pareto set之方向及遠離Pareto set之方向分別定義為訊號及雜訊, 此訊號/雜訊比能指出設計點在不確定因素的影響下,其性能表現是否仍能符合Pareto set之 趨勢。此外,為了確保各個設計點的性能變動範圍均能在設計者所允許之範圍內,本論文所 提出之設計流程亦整合了公差設計方法。此設計流程也整合傳統的不確定因素分析與解析目 標傳遞法,以解決多層系統之多目標設計與公差配置問題。本論文所提出之方法,並不直接 指出最佳的設計點,而是提供設計者三個量化指標來輔助設計者進行決策。本論文將使用一 數學範例與一工程範例進行演示。透過單一系統與多層系統的多目標最佳化,說明此方法於 實際工程上之應用。

    In this work we develop a method to perform simultaneous design and tolerance allocation for engineering problems with multiple objectives. Most studies in existing literature focus on either optimal design with constant tolerances or the optimal tolerance allocation for a given design setup. Simultaneously performing both design and tolerance allocation with multiple objectives for hierarchical systems increases problem dimensions and raises additional com- putational challenges. A design framework is proposed to obtain optimal design alternatives and to rank their performances when variations are present. An optimality influence range is developed to aid design alternatives selections with an influence signal-to-noise ratio that indicates the accordance of objective variations to the Pareto set and an influence area that quantifies the variations of a design . An additional tolerance design scheme is implemented to ensure that design alternatives meet the target tolerance regions. The proposed method is also extended to decomposed multi-level systems by integrating traditional sensitivity analysis for uncertainty propagation with analytical target cascading. This work enables decision-makers to select their best design alternatives on the Pareto set using three measures with different purposes. Examples demonstrate the effectiveness of the method on both single- and multi-level systems.

    論文口試委員審定書........................................ i 書名頁................................................ ii 中文摘要 ............................................ iii 英文摘要 ............................................ iv 誌謝............................................... v 目錄............................................... vi 表目錄.............................................. ix 圖目錄.............................................. x 符號說明 ............................................ xii 第一章、序論.......................................... 1 1.1 前言.......................................... 1 1.2 研究動機與目的.................................... 3 1.3 論文架構 ....................................... 4 第二章、研究背景與文獻回顧................................. 5 2.1 多目標最佳化簡介 .................................. 7 2.2 多目標最佳化方法 .................................. 8 2.2.1 權重法..................................... 10 2.2.2 拘束法..................................... 10 2.3 不確定因素模擬與分析................................ 12 2.4 公差設計與公差成本模型 .............................. 14 2.5 小結.......................................... 15 第三章、複雜系統整合與設計................................. 16 3.1 解析目標傳遞法.................................... 16 3.1.1 多層系統模型架構與演算流程........................ 17 3.1.2 解析目標傳遞法數學模型 .......................... 21 3.2 權重更新法 ...................................... 24 3.2.1 權重更新法理論................................ 24 3.2.2 權重更新法流程描述............................. 27 第四章、研究方法 ....................................... 30 4.1 多目標最佳化與不確定因素分析........................... 33 4.2 公差設計 ....................................... 34 4.3 最佳影響範圍..................................... 36 4.4 最佳影響範圍面積 .................................. 38 4.5 最佳影響範圍SN比.................................. 38 4.6 小結.......................................... 40 第五章、複雜系統之延伸與應用 ............................... 41 5.1 多目標最佳化..................................... 42 5.2 不確定因素分析.................................... 43 5.3 最佳影響範圍..................................... 45 第六章、工程範例 ....................................... 47 6.1 問題描述與模型建構................................. 47 6.2 結果與討論 ...................................... 53 第七章、研究貢獻與未來方向................................. 56 7.1 研究貢獻 ....................................... 56 7.2 未來研究方向與建議................................. 57 參考文獻 ............................................ 60 自傳............................................... 65

    [1] W. Fowlkes and C. Creveling, Engineering Methods for Robust Product Design. Reading,
    MA: Addison-Wesley, 1995.
    [2] R. Braun, Collaborative Optimization: An architecture for large-scale distributed design. PhD thesis, Stanford University, April, 1996.
    [3] N. Michelena and P. Papalambros, “A system partitioning and optimization approach to target cascading,” in Proceedings of the 12th international conference on engineering design, 1999.
    [4] H. Kim, N. Michelena, P. Papalambros, and T. Jiang, “Target cascading in optimal system design,” Journal of Mechanical Design, vol. 125, pp. 474–480, Aug 2003.
    [5] J. Allison, M. Kokkolaras, and P. Papalambros, “On selecting single-level formulations for complex system design optimization,” Transactions of the ASME, vol. 129, pp. 898–906, Sep 2007.
    [6] R. V. Tappeta and J. E. Renaud, “Multiobjective collaborative optimization,” Journal of Mechanical Design, vol. 119, pp. 403–411, Sep 1997.
    [7] R. Kumar, K. Izui, M. Yoshimura, and S. Nishiwaki, “Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization,” Reliability Engineering and System Safety, vol. 94, pp. 891–904, 2009.
    [8] M. Li and S. Azarm, “Multiobjective collaborative robust optimization with interval un- certainty and interdisciplinary uncertainty propagation,” Journal of Mechanical Design, vol. 130, p. 08142, Aug 2008.
    [9] M. Li, J. Hamel, and S. Azarm, “Optimal uncertainty reduction for multi-disciplinary multi-output systems using sensitivity analysis,” Structural Multidisciplinary Optimiza- tion, vol. 40, pp. 77–96, 2010.
    [10] C. McAllister and T. Simpson, “Multidisciplinary robust design optimization of an internal combustion engine,” Journal of Mechanical Design, vol. 125, pp. 124–130, 2003.
    [11] D. Li and Y. Haimes, “Hierarchical generating method for large-scale multiobjective sys- tems,” Journal of Optimization Theory and Applications, vol. 54, pp. 303–333, 1987.
    [12] A. Giassi, F. Bennis, and J. J. Maisonneuve, “Multidisciplinary design optimisation and robust design approaches applied to concurrent design,” Structural and Multidisciplinary Optimization, vol. 28, pp. 356–371, 2004.
    [13] F. Cheng, F. Ye, and J. Yang, “Multi-objective optimization of collaborative manufacturing chain with time-sequence constraints,” International Journal of Advanced Manufacturing Technology, vol. 40, pp. 1024–1032, 2009.
    [14] 許志義, 多目標決策. 五南圖書出版社, 民國八十三年.
    [15] J. Lin, “Multiple objective problems: Pareto-optimal solutions by method of proper equal-
    ity constraints,” IEEE Transactions on Automatic Control, vol. 21, pp. 641–650, 1976.
    [16] K. Miettinen, Nonlinear Multiobjective optimization. Kluwer Academic Publisher, 1998.
    [17] M. Zeleny, Compromise Programming. University of South Carolina Press, 1973.
    [18] S. Gass and T. Saaty, “The computational algorithm for the parametric objective func- tion,” Naval Research Logistics Quarterly, vol. 2, p. 39, 1955.
    [19] L. Zadeh, “Optimality and non-scalar-valued performance criteria,” IEEE Transactions on Automatic Control, vol. 8, no. 59–60, 1963.
    [20] I. Kim, “Adaptive weighted sum method for biobjective optimization: Pareto front gener- ation,” Structural and Multidisciplinary Optimization, vol. 29, pp. 149–158, 2005.
    [21] S. Marglin, Public Investment Criteria. MIT Press, 1967.
    [22] B. M. Ayyub, Uncertainty Modeling and Analysis in Civil Engineering. CRC Press, 1998.
    [23] R. Early and J. Thompson, “Variation simulation modeling - variation analysis using monte carlo simulation,” ASME publication No. DE, vol. 16, pp. 139–144, 1989.
    [24] V. Skowronski and J. Turner, “Using monte-carlo variance reduction in statistical tolerance synthesis,” Computer-Aided Design, vol. 29, pp. 63–69, 1997.
    [25] S. Martosell, A. Sanchez, and S. Carlos, “A tolerance interval based approach to address uncertainty for rams+ c optimization,” Reliability Engineering and System Safety, vol. 92, pp. 408–422, 2007.
    [26] L. Xu, G. Cheng, and P. Yi, “Tolerance synthesis by a new method for system reliability- based optimization,” Engineering Optimization, vol. 37, pp. 717–732, 2005.
    [27] G. Savage, D. Tong, and S. Carr, “Optimal mean and tolerance allocation using conformance-based design,” Quality and Reliability Engineering International, vol. 22, pp. 445–472, 2006.
    [28] B. Cheng and S. Maghsoodloo, “Optimization of mechanical assembly tolerances by in- corporating Taguchi’s quality loss function,” Journal of Manufacturing Systems, vol. 14, pp. 264–276, 1995.
    [29] B. Ye and F. Salustri, “Simultaneous tolerance synthesis for manufacturing and quality,” Research in Engineering Design, vol. 14, pp. 98–106, 2003.
    [30] J. Xue and P. Ji, “Process tolerance allocation in angular tolerance charting,” International Journal of Production Research, vol. 42, pp. 3929–3945, 2004.
    [31] T.-C. Chen and G. Fisher, “A GA-based search method for the tolernace allocaiton prob- lem,” Artificial Intelligence in Engineering, vol. 14, pp. 133–141, 2000.
    [32] Z. Zhou, W. Huang, and L. Zhang, “Sequential algorithm based on number theoretic method for statistical tolerance analysis and synthesis,” Journal of Manufacturing Science and Engineering, vol. 123, pp. 490–493, 2001.
    [33] J. Jordaan and C. Ungerer, “Optimization of design tolerances through response surface approximations,” Journal of Manufacturing Science and Engineering, vol. 124, pp. 762– 767, 2002.
    [34] G. Taguchi, E. Elsayed, and T. Hsiang, Quality Engineering in Production Systems. McGraw-Hill, 1989.
    [35] H. Vasseur, T. Kurfess, and J. Cagan, “Use of a quality loss function to select statistical tolerances,” Journal of Manufacturing Science and Engineering, vol. 119, pp. 410–416, 1997.
    [36] H. Choi, M. Park, and E. Salisbury, “Optimal tolerance allocation with loss function,” Journal of Manufacturing Science and Engineering, vol. 122, pp. 529–535, 2000.
    [37] M. C. Li, “Optimal target selection for unbalanced tolerance design,” International Journal of Advanced Manufacturing Technology, vol. 23, pp. 743–749, 2004.
    [38] A. Jeang, “Combined parameter and toelrance design optimization with quality and cost,” International Journal of Production Research, vol. 39, pp. 923–952, 2007.
    [39] N. Michelena, H. Park, and P. Papalambros, “Convergence properties of analytical target cascading,” AIAA Journal, vol. 41, no. 5, pp. 897–905, 2003.
    [40] Y. Li, Z.Lu, and J. Michalek, “Diagonal quadratic approximation for parallelization of analytical target cascading,” Journal of Mechanical Design, vol. 130, p. 051402, May 2008.
    [41] J. Michalek and P. Papalambros, “An efficient weighting update method to achieve ac- ceptable consistency devin in analytical target cascading,” Journal of Mechanical Design, vol. 127, pp. 206–214, Mar 2005.
    [42] M. Hanss, Applied Fuzzy Arithmetic: An Introduction with Engineering Applications. The Netherlands: Springer, 2004.
    [43] J. Sobieszczanski-Sobieski, “Sensitivity of complex, internally coupled systems,” AIAA Journal, vol. 28, no. 1, pp. 153 – 160, 1990.
    [44] S. Utyuzhnikov, J. Maginot, and M. Guenov, “Local pareto approximation for multi- objective optimization,” Engineering Optimization, vol. 40, no. 9, pp. 821–847, 2008.
    [45] J. Allison, M. Kokkolaras, M. Zawislak, and P. Papalambros, “On the use of analytical target cascading and collaborative optimization for complex system design,” in Proceedings of the 6th World Congress on Structural and Multidisciplinary Optimization, May 30 - June 3 2005.
    [46] ASME Y14.5, Dimensioning and Tolerance. 2009.
    [47] ASME Y14.5.1M, Mathematical Definition of Dimensioning and Tolerancing Principles. 2004.
    [48] S. Tosserams, L. Etman, P. Papalambros, and J. Rooda, “An augmented lagrangian relax- ation for analytical target cascading using the alternating direction method of multipliers,” Structural and Multidisciplinary Optimization, vol. 31, no. 3, pp. 176 – 189, 2006.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE