| 研究生: |
王維志 Wang, Wei-Chih |
|---|---|
| 論文名稱: |
具放大機構之單軸壓電驅動撓性精密定位平台之分析、設計、控制 Analysis, Design and Control of a Single-Degree of Freedom Piezoelectric Compliant Stage with Amplification Mechanisms |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 自動化光學檢測 、精密定位平台 、壓電致動器 、撓性機構 、PID控制 、順滑模態控制 |
| 外文關鍵詞: | Automatic Optical Inspection, Precision Positioning Stages, Piezoelectric Actuators, Compliant Mechanisms, PID Control, Sliding-Mode Control |
| 相關次數: | 點閱:152 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,主動式振動控制發展快速,應用層面多樣化,如自動化光學檢測設備。由於安裝於大質量龍門上的顯微鏡組,在龍門停止或到位,機台晃動需很快的停止,否則CCD鏡頭組與待測物產生相對位移進而造成影像模糊等問題。因此,本研究利用控制的方法來抑制其振動量並且快速抑制振動使其達到穩定。本論文最主要研究目的在發展出主動式控制撓性平台應用於自動化光學檢測系統,期望能將此一撓性平台用來抑制龍門機台之啟動停止,所造成CCD鏡頭的振動、快速定位與高定位精確度,並且針對各種不同重量之負載,來模擬CCD鏡頭重量。本文主要利用壓電致動器驅動精密定位平台之軌跡控制,透過閉迴路控制搭配PID控制以及滑動模態控制來改善定位平台增加負載(Loading)之後造成平台的振盪與不穩定,並且探討此兩種控制器之優缺點。在平台負載614g(質量變異百分比731%)之20.32μm步階響應特性中, overshoot方面,從開迴路的43.8%分別藉由PID與SMC減小到0.89%和3%;settling time方面,則是從249.7ms縮短為35ms和39.3ms;穩態誤差之兩個標準差約為91nm和53.8nm。控制器強健性方面,平台受外界干擾1.02N恢復至目標所需之時間,採用PID控制約需30msec,SMC則需24ms。在動態三角波運動路徑軌跡追蹤,可觀察出在10Hz時,SMC的控制效果比PID良好。 從結果觀察,本研究所設計之撓性平台具有體積小且質量輕等優點,並且採用了回授控制的方法,能大幅的降低由於負載而使平台所產生的振盪。此類產品國外價格昂貴,本研究之主動式振動控制撓性平台,在價格上較為便宜且抑制振動效果亦相當良好,可以提供國內相關精密製造產業符合需求。
Automatic Optical Inspection (AOI) plays an important role on modern semiconductor and optoelectronics industries. A typical AOI equipment consists of a camera mounted on a gantry for performing large-area inspection. Fast and accurate maneuver would influence the inspection efficiency. However, the motion induced vibration during fast transition could significantly increase the settling time and therefore deteriorate the inspection rate. In this thesis, a piezoelectric driven compliant stage was design as the carrier for camera. By integrating control scheme with the stage, it is possible to suppress the vibration and therefore improve the performance of AOI. In the first part of this thesis, a novel compliant stage was design and realized. By integrating mechanical amplifier with piezoelectric actuator and capacitance probe, this stage could achieve a natural frequency of 393Hz and stoke of 71μm. Essential structural dynamics tests, as well as finite element simulations were performed for characterizing the system dynamics for feedback control. In the second part of this thesis, the stage control was implemented by both PID and sliding mode control schemes. First, the equivalent system was constructed by MATLAB/Simulink, and discussing the step response effects of the parameter of PID and sliding mode controller. Because the disturbances of the environment, it may make the stage away from its steady position. For the purpose of robustness over possible dynamic parameter variation during service, this thesis also addressed the robustness of the controller. The control schemes were implemented and realized by FPGA module of LabVIEW and CompactRIO system. Experiment data showed that the results of system under a payload of 0.614kg(mass uncertainty 731%) and a 20.32μm step input. The overshoots of PID control and SMC, where reduced to 0.89% and 3% in comparison with the original 43.8% with no control. The settling time is also reduced to 35ms and 39.3ms from original 249.7ms. For the performances against disturbance with a disturbed force of 1.02N, it returns to steady position that takes about 29ms and 24ms. In comparison with commercial Physik Instrumente (PI) P-611 stage, the stage proposed by this work provides a better dynamic performance such as response time and robustness, which are essential for AOI and related applications. As a result, we believe that by further structural and control design optimization, this prototype would have great potential for AOI and other possible industrial applications.
[1] PZTCompliantstages:http://www.physikinstrumente.com/en/pdf_extra/2009_PI_Nanopositioning_Systems_Piezo_Stage_Catalog.pdf
[2] CCD camera: http://www.besteta.com.tw/product.php?up_id=97&c_id=100
[3] CCD camera: http://www.apisc.com.tw/Computar_Factory_Automation_Lenses.htm
[4] CCD camera: http://www.chgroup.com.tw/chi/product2.php?n=272&s=2
[5] Cuttino, J. F., Miller, A. C., Jr.; Schinstock, D. E., “Performance optimization of a fast tool servo for single-point diamond turning machines,” IEEE/ASME Transactions on Mecchatronics, Vol.4, Issue.2, pp.169-179, 1999.
[6] J. M. Paros and L. Weisbord, “How to design flexure hinge,” Machine Design, Vol.37, pp.151-157, 1965.
[7] S. H. Chang and B. C. Du, “A precision piezodriven micropositioner mechanism with large travel range,” Review of Scientific Instruments, Vol. 69, 1998.
[8] Q. Xu and Y. Li, “Global sliding mode-based tracking control of a piezo-driven XY micropositioning stage with unmodeled hysteresis,” IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, pp755-760, October 11-15, 2009.
[9] W. T. Ang, et. al., ”Modeling rate-dependent hysteresis in piezoelectric actuators,” Proceedings of the 2003 IEEE/RES Intl. Conference on Intelligent Robots and Systems, Las Vegas, pp. 1975-1980, 2003.
[10] J-C Shen, et. al., “Precision tracking control of a piezoelectric-actuated system,” Proceedings of the 15th Mediterranean Conference on Control & Automation, Athens-Greece, pp.1-6, 2007.
[11] U-J Shieh, Y-J Chiu, and Y-T Chen, “Optimal PID control system of a piezoelectric micro-positioner,” IEEE/SICE International Symposium on System Integration, pp.1-5, 2008.
[12] K. M. Chang, “Model reference adaptive control for a precision positioning system,” IEEE International Conference on Control and Automation, New Zealand, pp. 1086-1091, 2009.
[13] H-J Shieh, P-K Huang, “Trajectory tracking of piezoelectric positioning stages using a dynamic sliding-mode control,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 53, No. 10, pp. 1872-1882, 2006
[14] J. Domingo, et. al., “Nonlinear control system based on fuzzy logic technique applied to drive piezoactuators for microrobotic applications,” IEEE International Conference on Emerging Technologies and Factory Automation, Vol.1, pp.559-563, 1999.
[15] NI Compact RIO:http://zone.ni.com/devzone/cda/tut/p/id/6171
[16] I. Her, J. C. Chang, “Linear scheme for the displacement analysis of micropositioning stages with flexure hinges”, ASME Journal of Mechanical Design, Vol. 116, pp.770-776, 1994.
[17] Q. Zhang, Z. S. Lu, “A study on design of ultra-precision micro-feed stage”, Key Engineering Materials , Vol. 315-316, pp.131-135, 2006.
[18] G. Xu, L. Qu, “Some analytical problems of high performance flexure hinge and micro-motion stage design”, Proceedings of The IEEE International Conference on Industrial Technology, pp.771-775, 1996.
[19] A. Balasubramanian, et. al., “A submicron multiaxis positioning stage for micro- and nanoscale manufacturing processes,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 130, pp. 1-8, 2008.
[20] 傅士澤,奈米級微定位平台最佳化設計與分析,碩士論文,國立中興大學機械工程所,2001。
[21] P. Gao, S. M. Swei, and Z. Yuan, “A new piezodriven precision micropositioning stage utilizing flexure hinges”, Nanotechnology, Vol.10, pp.394-398, 1999.
[22] Z. Yun and L. Sun, “Design, control and application of a PZT-driven micro-stage”, Proceeding of the 2007 IEEE International Conference on Mechatronics and Automation, pp.1471-1476, 2007.
[23] A. Cahyadi and Y. Yamamoto, “Hysteretic modeling of piezoelectric actuator attached on flexure hinge mechanism,” Proc. of the IEEE International Conference on Intelligent Robots and Systems pp. 5437-5440, Beijing, China, 2006.
[24] Q. Yao, J. Dong and P. M. Ferreira, “Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage,” International Journal of Machine Tools & Manufacture, Vol. 47, pp. 946-961, 2007.
[25] Y. M. Chen, L-P Chao and J-L Jung, “Two-dimensional micro/nano-positioning-stage with a narrow-span leaf-spring type guiding mechanism,” Journal of Advanced Engineering, Vol. 2, No. 2, pp. 67-72, 2007.
[26] T. J. Lewis, “The piezoelectric effect,” Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 717-720, 2005.
[27] 李宏仁,微米級定位平台振動主動控制之研究,碩士論文,南台科技大學奈米科技研究所,2008。
[28] 何慶鴻,車削細長形工件的適應性顫振抑制控制器設計,私立逢甲大學自動控制工程學系碩士論文,2009。
[29] NI Real-time: http://zone.ni.com/devzone/cda/tut/p/id/2856
[30] NI Real-time: http://sine.ni.com/cs/app/doc/p/id/cs-10042
[31] Z. Xi and T. Hesketh, “A new higher order sliding control for continuous linear systems,” 16th Mediterranean Conference on Control and Automation, pp. 647-651, June 25-27, 2008.
[32] S. Huang, K. K. Tan, and T. H. Lee, “Adaptive sliding –mode control of piezoelectric actuator,” IEEE Transcations on Industrial Electronics, Vol. 56, pp.3514-3522, 2009.
[33] B. M. Chen, et. al, “An H∞ almost disturbance decoupling robust controller design for a piezoceramic bimorph actuator with hysteresis,” IEEE Transaction on Control Systems Technology, Vol.7, No.2, pp.160-173, 1999.
[34] 謝銘謙,雙軸三自由度精密定位系統之控制研究,碩士論文,國立中興大學機械工程研究所,2003。
[35] 莊鎮文,力量估測器於主動式振動抑制實作,碩士論文,國立中山大學機械與機電工程學系,2002。
[36] Q. Xu, Y. Li and N. Xi, “Design, fabrication, and visual servo control of an XY parallel micromanipulator with piezo-actuation,” IEEE Transaction on automation science and engineering, Vol. 6, No. 4, pp. 710-719, 2009.
[37] S. T. Smith and D. G. Chetwynd, Foundations of Ultraprecision Mechanism Design, Gordon and Breach Science Publishers, USA, 1994.
[38] S. S. Rao, Mechanical vibrations 4thEd, Pearson Education, Upper Saddle River, N.J., 2004.
[39] 張碩,自動控制系統,鼎茂圖書,台北,2001.
[40] U. Itkis, Control System of Variable Structure, John Wiley and Sons, New York, N.Y., 1976.
[41] V. I. Utkin, “Survey paper-variable structure systems with sliding modes,” IEEE Transactions on automatic control, Vol. ac-22, pp. 212-222, 1977.
[42] J. J. E. Slotine, and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood-Cliff., N.J., 1991.