| 研究生: |
蔡傑丞 Cai, Jie-Cheng |
|---|---|
| 論文名稱: |
含磺酸基α-甲基二苯乙烯全芳香族醚碸共聚物之合成與性質 Synthesis and Properties ofα-Methylstilbene Based Aryl Ether Sulfone Copolymers Containing Sulfuric Acid Group |
| 指導教授: |
郭人鳳
Kuo, Jen-Feng 凌漢辰 Ling, Han-Chern |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 4’-二苯乙烯、燃料電池、質子交換薄膜 、含磺酸基全芳香族醚碸共聚物、α-甲基-4 |
| 外文關鍵詞: | Sulfonated Poly(arylene ether sulfone), α-methylstilbene, Fuel cell, Proton Exchange Membranes |
| 相關次數: | 點閱:80 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文經親核性逐步聚合反應直接合成出一系列可定量控制懸吊磺酸根基團之均聚合物及共聚合物。此新穎共聚合物是利用α-甲基-4, 4’-二苯乙烯(HMS) 、4,4’-二氯二苯碸(DCDPS) 和3,3’-磺酸基-4,4’二氯二苯碸(SDCDPS) 所合成,經由控制HMS、DCDPS和SDCDPS的莫耳比,可以得到由10 mol%到70 mol%有系統性磺酸化程度的共聚物。目的是為了得到具有熱、水解和氧化高穩定性,高分子量且具優良薄膜性質並可傳導質子的共聚物,以期可以使用於燃料電池中的質子交換薄膜。
磺酸化共聚物是先合成為鈉塩形式再經由轉換形成酸的形式,並以酸形式的共聚物薄膜於燃料電池的質子交換薄膜操作範圍進行研究。預期水及甲醇水溶液的平衡吸收會和雙苯酚單體的結構以及磺酸化的程度有關,並隨磺酸根基團的增加而增加,同時磺酸化程度亦和熱穩定性、Tg、質子傳導度有著相關聯性。
在完全水合的狀態下,磺酸化共聚物的質子傳導度也和雙苯酚單體的結構以及磺酸化程度有關,因此為了要使共聚物薄膜有較佳值必須謹慎考慮聚合物結構和磺酸化的方法,本實驗所合成磺酸化共聚物導電度可以提升至0.1 S/cm以上,並和市售聚全氟性磺酸化高分子
Nafion比較大致相同。
A designed series of directly copolymerized homo- and disulfonated copolymers containing controlled degrees of pendant sulfonic acid groups have been synthesized via nucleophilic step polymerization. Novel sulfonated poly (arylene ether sulfone) copolymers using α-methylstilbene (HMS), with dichlorodiphenyl sulfone (DCDPS) and 3,3’-disodiumsulfonyl-4,4’-dichlorodiphenylsulfone (SDCDPS) were investigated. Molar ratios of DCDPS and SDCDPS were systematically varied to produce copolymers of controlled compositions, which contained up to 70 mol% of disulfonic acid moiety. The goal is to identify thermally, hydrolytically, and oxidatively stable high molecular weight,
film-forming, ductile ion conducting copolymers, which had properties desirable for proton exchange membranes (PEM) in fuel cells.
The sulfonated copolymers were prepared in the sodium-salt form and converted to the acid moiety and subsequently investigated as proton exchange membranes for fuel cells. Hydrophilicity increased with the level of disulfonation, as expected. Moreover, water sorption increased with increasing mole percent incorporation of SDCDPS. The copolymers’ water uptake depended on both bisphenol structure and degree of disulfonation. Furthermore, the acidification procedures were shown to influence the Tg, water uptake, and conductivity of the copolymers.
Proton conductivities for the sulfonated copolymers, under fully hydrated conditions, were a function of bisphenol structure and degree of sulfonation. A careful balance of copolymer composition and acidification method was necessary to afford films which can be both ductile and proton conductive. The copolymers of optimum design yielded conductivities of 0.1 S/cm or higher, which were comparable to those of commercial polyperfluorosulfonic acid films (Nafion™ ).
第七章 參考文獻
1. 曾重仁,羅世坤;“直接甲醇型燃料電池(DMFC)與氫氣質子交換膜燃料電池
(PEMFC)”,化工技術,165,2004年4月
2. 楊志忠,林頌恩,韋文誠;“燃料電池的發展現況”,科學發展, 30,2003年7 月
3. 黄鎮江;“燃料電池”,全華科技圖書股份有限公司,92年11月
4. 吳千舜,諸柏仁;“燃料電池質子交換膜的最新發展”,chemistry, 62, 123,
2004
5. Hickner M. A.; Ghassemi H.; Kim Y. S.; Einsla B. R.; McGrath J. E.,
Chem. Rev., 104, 4587, 2004
6. Scherer G. G., Phys. Chem., 94,1008,1990
7. Gupta B.; Buchi F. N.; Schere G. G., Solid state Ionics, 61, 213, 1993
8. Wei J.; Stone C.; Steck A. E., WO95/08581, 1995
9. Wei J.; Stone C.; Steck A. E., J. Membr. Sci., 4771, 1, 2000
10. Hietala S.; Maunu S. L.; Sundholm F. J., J. Polym. Sci., 38, 2000
11. Kawahara M.; Rikukawa M.; Sanui K.; Ogata N., Solid State Ionics,
136,1193, 2000
12. Kawahara M.; Rikukawa M.; Sanui K., Polym. Adv. Technol., 11, 544,
2000
13. Asensio J. A.; Borros S.; Gomez R., J. Polym. Sci. Part A: Polym.
Chem., 40, 3703, 2002
14. Wang F.; Hickner M.; Kim Y. S.; Zawodinski T. A.; McGrath J. E., J.
Membr. Sci., 197, 359, 2001
15. Genies C.; Mercier R.; Sillinon B.; Cornet N.; Gebel G.; Pineri M.,
Polymer, 42, 359, 2001
16. Valejo E.; Gavach C.; Pineri M., J.Power Sources, 160, 127, 1999
17. Guo X.; Fang J.; Watari T.; Tanaka K.; Kita H.; Okamota,
Macromolecules, 35, 6707, 2002
18. Rikukawa M.; Sanui K., Prog. Polym. Sci., 25, 1463, 2000
19. Bae J. M.; Honma I.; Murate M.; Yamamoto T.; Rikukawa M.; Ogata N.,
Solid State Ionics, 147, 189, 2002
20. Child A. D.; Reynold J. R., Macromolecules, 27, 1975, 1994
21. Rulkens R.; Schulze M., Macromol. Rapid Commun., 15, 669, 1994
22. Miyatake K.; Iyotani H.; Yamamoto K.; Tscuchida E., Macromolecules,
29, 6969, 1996
23. Hruszka P.; Jurga J.; Brychi B., Polymer, 33, 248, 1992
24. Kosmala B.; Schauer J., J. Appl. Polym. Sci., 85, 1118, 2002
25. Miyatake K.; Shouji E.; Yamamoto K.; Tsuchida E., Macromolecules, 30,
2941, 1997
26. Kopitzke R. W.; Linkous C. A.; Nelson G. L., J. polym. Sci., 36,
1197, 1998
27. Guo Q.; Pintauro P. N.; Tang H.; O’Connor S., J. Polym. Sci., 154,
175, 1999
28. Elabd Y. A.; Napadensky E.; Sloan J. M.; Crawford D. M.; Walker C.
W., J. Membr. Sci, 217, 227, 2003
29. Won J.; Park H. H.; Kim Y. J.; Choi S. W.; Ha H. Y.; OH I. H.; Kim H.
S.; Kang Y. S. Ihn K. J., Marcomolecules, 36, 3228, 2003
30. Hona I.; Takeda Y.; Bae J. M., Solid State Ionics, 120, 255, 1999
31. Nakajima H.; Honma I., Solid State Ionics, 148, 607, 2002
32. Honma I.; Nomura S.; Nakajima H., J. Membr. Sci., 185, 83, 2001
33. Nakajima H.; Nomura S.; Sugimoto T.; Nishikawa S.; Honma I., J.
Electrochem. Soc., 149, A953, 2002
34. Staiti P.; Minutoli M.; Hocevar S., J. Power Sources, 90, 231, 2000
35. Staiti P.; Minutoli M., J. Power Sources, 94, 9, 2001
36. Staiti P., Mater. Lett., 47, 241, 2001
37. Amarilla J. M.; Rojas R. M.; Rojo J. M.; Cubillo M. J.; Linares A.;
Acosta, J. L., Solid State Ionics, 127, 133, 2000
38. Genova D. P.; Baradie B.; Foscallo D.; Poinsignon C.; Sanchez J. Y.,
J. Membe. Sci., 185, 59, 2001
39. Baradie B.; Poinsignon C.; Sanchez J. Y.; Piffard Y.; Vitter G.;
Bestaoui N.; Foscallo D.; Denoyelle A.; Delabouglise D.; Vaujany M.
J., J. Power Sources, 74, 8, 1998
40. Poinsignon C.; Amodio I.; Foscallo D.; Sanchez J. Y., Mater. Res.
Soc. Symp. Proc., 548, 307, 2000
41. Bonnet B.; Jones D. J.; Roziere J.; Tchicaya L.; Alberti G.; Casciola
M.; Massinelli L.; Baner B.; Peraio A.; Ramunni E. J., New Mater.
Electrochem. Sys., 3, 87, 2000
42. Zaidi S. M.; Mikhailenko S. D.; Robertson G. P.; Guiver M. D.;
Kaliaguine S. J., J. Membr. Sci., 173, 17, 2000
43. Nunes S. P.; Ruffmann B.; Rikowski E.; Vetter S.; Richau K., J.
Membr. Sci., 2003, 215, 2002
44. Mikhailenko S. D.; Zaidi S. M. J.; Kaliaguine S., Catal Today, 67,
225, 2001
45. Rozie’re J.; Jones D. J.; Tchicaya B. L.; Bauer B., WO02/05370, 2000
46. Alberti G.; Casciola M., Solid State Ionics, 97, 177, 1997
47. Alberti G.; Casciola M.; Palombari R., J. Membr. Sci., 172, 233, 2000
48. Alberti G.; Casciola M.; Costantino R.; Vivani R., Adv. Mater., 8,
291, 1996
49. Mauritz K. A., Mater. Sci. Eng., 6, 121, 1998
50. Nakajima H.; Nomura S.; Sugimoto T.; Nakajima H., J. Electrochem.
Soc., 149, 953, 2002
51. Nakajima H.; Nomura S.; Sugimoto T.; Nakajima H., J. Membr. Sci.,
185, 83, 2001
52. Hickner M.; Kim Y. S.; Wang F.; Zawodzinski T. A.; McGrath J. E.,
Sample Tech. Conf., 33, 1519, 2001
53. Genova D. P.; Baradie B.; Foscallo D.; Poinsignon C.; Sanchez J. Y.,
J. Membr. Sci., 185, 59, 2001
54. Bonnet B.; Jones D. J.; Roziere J., J.New Mater. Electrochem. Syst.,
3, 87, 2000
55. Bhargava P. M.; Zaheer S. H., Nature, April 25, 746, 1953,
56. Wan C. H.; Kuo J. F.; Chen C. Y., Liquid Crystal, 27, 523, 2000
57. Francis A. C., “Organic Chemistry”, McGraw Hill,2000
58. Sumner M. J.; Harrison W. L.; Weyers R. M.; Kim Y. S. McGrath J. E. ;
Riffle J. S.; Brink A.; Brink M. H., J. Membr. Sci., 239, 199, 2004
59. Harrison W. L.; Wang F.; Mecham J. B.; Bhanu V. A.; Hill M.; Kim Y.
S., J. Polym. Sci. Part A: Polym. Chem., 41, 2264, 2003
60. Ueda M.; Toyota H.; Ochi T.; Sugiyama J.; Yonetake K.; Masuko T.;
Teramoto T., J. Polym. Sci. Part A: Polym. Chem., 31, 85, 1993
61. Choi I. J.; Yoon T. H., J. Appl. Polym. Sci., 93, 1211, 2004
62. Kopitzke R. W.; Linkous C. A.; Nelson G. L., Polymer Degradation and
stability, 67, 335, 2000
63. Park H. B.; Shin H. S.; Lee Y. M.; Rhim J. W., J. Membr. Sci., 247,
103, 2005
64. Rao M. R.; Rao V. L., J. Appl. Polym. Sci., 74, 3425, 1999
65. Perng L. H., J. Polym. Sci. Part A: Polym. Chem., 38, 583, 2000
66. Wang F.; Hickner M.; Kim Y. S.; Zawodzinski T. A.; McGrath J. E., J.
Membr. Sci., 197, 231, 2002
67. Zaidi S. M. J.; Mikhailenko S. D.; Robertson G. P.; Guiver M. D.;
Kaliaguine S., J. Membr. Sci., 173, 17, 2000
68. Manea C.; Mulder M., J. Membr. Sci., 206, 443, 2002
69. Cho K. Y.; Eom J. Y.; Jung H. Y.; Choi N. S.; Lee Y. M.; Park J. K.;
Choi J. H.; Park K. W.; Sung Y. E., Electrochem. Acta., 50, 583, 2004
70. Pivovar B. S.; Wang Y.; Cussler E. L., J. Membr. Sci., 154, 155, 1999
71. Sone Y.; Ekdunge P.; Simonsson D., J. Electrochem. Soc., 143, 1254,
1996