| 研究生: |
張徐少梅 Chang, Julie Shao-Mei |
|---|---|
| 論文名稱: |
使用淨相關分析來偵測酵母菌細胞週期轉錄因子的調控基因 Using Partial Correlation Analysis to Identify Regulatory Targets of Cell Cycle Transcription Factors in Yeast |
| 指導教授: |
詹寶珠
Chung, Paw-Choo |
| 共同指導教授: |
吳謂勝
Wu, Wei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 調控基因 、轉錄因子 、細胞週期 |
| 外文關鍵詞: | regulatory genes, TF, cell cycle |
| 相關次數: | 點閱:84 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
重建轉錄調控網路(Transcriptional Regulatory Network)有助於我們了解細胞是如何因應環境變化而調控其各個基因表現狀態。免疫沉澱實驗晶片資料(ChIP-chip Data)因為提供了轉錄因子(Transcription Factor)會結合到那些基因啟動子(promoter)的資訊而廣泛地被使用在轉錄調控網路重建的問題上。但是轉錄因子有結合到某個基因啟動子上並不代表轉錄因子就能調控此基因的表現,所以必須發展一套演算法從免疫沉澱實驗晶片資料中把轉錄因子真正會調控的基因找出來。本篇論文提出了轉錄因子調控基因的偵測法Regulatory Target Extraction Algorithm (RETEA),我們使用淨相關分析 (Partial Correlation Analysis),從免疫沉澱實驗晶片資料提供的轉錄因子會結合到那些基因的資訊,偵測出轉錄因子真正會調控那些基因的表現。我們應用RETEA於細胞週期之基因表現資料(Gene expression data for the cell cycle process),找出了會受到細胞週期轉錄因子調控的基因。再將找出的這群基因利用所參與共同功能的多寡以及所包含細胞週期基因的個數比例這兩個方式來驗證我們的結果。在評估RETEA功能優異性方面,將它與三個已發表的演算法比較(Garten et al.’s method, MA-Network and TRIA),我們發現 RETEA的效果最好。總括本篇論文提出的細胞週期轉錄因子調控基因的偵測法,因能從免疫沉澱實驗晶片資料中找出真正被轉錄因子調控的基因,所以在提高免疫沉澱實驗晶片資料的實用性上,是一個很有用的工具。
Reconstructing transcriptional regulatory networks (TRNs) is crucial for understanding how a cell reorganizes its gene expression patterns to respond to environmental and physiological changes. ChIP-chip data, which indicate binding of transcription factors (TFs) to DNA regions in vivo, are widely used to reconstruct TRNs. However, the binding of a TF to a gene does not necessarily imply regulation. Thus, it is important to develop computational methods which can extract a TF’s regulatory targets from its binding targets. The REgulatory Targets Extraction Algorithm (RETEA) is developed in this study, which uses partial correlation analysis on gene expression data to extract a TF’s regulatory targets from its binding targets inferred from the ChIP-chip data. We applied RETEA to yeast cell cycle microarray data and identified the plausible regulatory targets of eleven cell cycle TFs. Our predictions are validated by checking the enrichments for cell cycle genes and shared molecular functions. Moreover, we showed that RETEA performs better than three published methods (Garten et al.’s Method, MA-Network and TRIA). In summary, RETEA is capable of extracting the TF-gene regulatory relationships from the TF-promoter binding relationships (inferred by the ChIP-chip data). Thus, using RETEA to preprocess the ChIP-chip data is crucial to make the ChIP-chip data useful in systems biology studies.
1. Hohmann S, Mager WH: Yeast Stress Responses. Springer-Verlag 2003.
2. Wu WS, Li WH, Chen BS: Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics 2006, 7:421.
3. Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 2003, 34:166–176.
4. Lee HG, Lee HS, Jeon SH, Chung TH, Lim YS, Huh WK: High-resolution analysis of condition-specific regulatory modules in Saccharomyces cerevisiae. Genome Biol. 2008, 9:R2.
5. Wu WS, Li WH: Identifying gene regulatory modules of heat shock response in yeast. BMC Genomics 2008, 9:439.
6. Chen HC, Lee HC, Lin TY, Li WH, Chen BS: Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 2004, 20:1914-1927.
7. Garten Y, Kaplan S, Pilpel Y: Extraction of transcription regulatory signals from genome-wide DNA-protein interaction data. Nucleic Acids Res. 2005, 33(2): 605-615.
8. Gao F, Foat BC, Bussemaker HJ: Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 2004, 5(1):31.
9. Hu Z, Killion PJ, Iyer VR: Genetic reconstruction of a functional transcriptional regulatory network. Nat. Genet. 2007, 39(5): 683-687.
10. Chang WC, Li CW, Chen BS: Quantitative inference of dynamic pathways via microarray data. BMC Bioinformatics 2005, 6(44):1-19.
11. Wu WS, Li WH:, Systematic identification of yeast cell cycle transcription factors using multiple data sources. BMC Bioinformatics 2008, 9:522.
12. Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270:467–470.
13. DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278:680–686.
14. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998, 9:3273–3297.
15. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95:14863–14868.
16. Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. J. Comput. Biol. 2000, 7:601–620.
17. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N: Revealing modular organization in the yeast transcriptional network. Nat. Genet. 2002, 31:370–377.
18. Pilpel Y, Sudarsanam P, Church GM: Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 2001, 29:153–159.
19. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA: Genome-wide location and function of DNA binding proteins. Science 2000, 290:2306–2309.
20. Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO: Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 2001, 409:533–538.
21. Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL, Wyrick JJ, Zeitlinger J, Gifford DK, Jaakkola TS, Young RA: Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 2001, 106:697–708.
22. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 2002, 298:799–804.
23. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory code of a eukaryotic genome. Nature 2004, 431:99–104.
24. Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP: Network component analysis: reconstruction of regulatory signals in biological system. Proc Natl Acad Sci USA 2003, 100:15522–15527.
25. Yu T, Li KC: Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics 2005, 21:4033–4038.
26. Wu WS, Li WH, Chen BS: Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. BMC Bioinformatics 2007, 8:188.
27. Reverter A, Chan EK : Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks.
Bioinformatics 2008, 24:2491-2497.
28. Fuente AD, Bing N, Hoeschele I, Mendes P: Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 2004, 20:3565-3574.
29. Sato T, Yamanishi Y, Horimoto K, Kanehisa M, Toh H: Partial correlation coefficient between distance matrices as a new indicator of protein–protein interactions. Bioinformatics 2006, 22:2488-2492.
30. Fitch AM, Jones MB: Shortest path analysis using partial correlations for classifying gene functions from gene expression data. Bioinformatics 2009, 25:42-47
31. Han L, Zhu J: Using matrix of thresholding partial correlation coefficients to infer regulatory network. BioSystems 2008, 91: 158-165.
32. Mewes HW, Frishman D, Guldener U, Mannhaupt G, Mayer K, Mokrejs M, Morgenstern B, Munsterkotter M, Rudd S, Weil B: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 2002, 30: 31-34.
33. Pramila T, Wu W, Miles S, Noble WS, Breeden LL: The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle, Genes Dev. 2006, 15(20): 2266-78.
34.Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M, Weng S, Botstein D: SGD: Saccharomyces Genome Database. Nucleic Acids Res. 1998, 26(1):73-9.
35. Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Fraenkel E, Jaakkola TS, Young RA, Gifford DK: Computational discovery of gene modules and regulatory networks. Nat Biotechnol 2003, 21:1337–1342.
36. Kato M, Hata N, Banerjee N, Futcher B, Zhang MQ: Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biology 2004, 5:R56.
37. MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E: An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMCBioinformatics 2006, 7: 113.
38. Banerjee N, Zhang MQ: Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res 2003, 31:7024–7031.