研究生: |
陳昱豪 Chen, Yu-Hao |
---|---|
論文名稱: |
高分子電荷捕捉層對有機非揮發性記憶元件特性影響研究 Studies of organic non-volatile memory device with polymeric charge trapping layer |
指導教授: |
鄭弘隆
Cheng, Horng-Long |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 有機非揮發性記憶元件 、有機薄膜電晶體 、電荷捕捉層 、記憶窗口 、記憶保持能力 、耐久性 |
外文關鍵詞: | organic non-volatile memory devices, organic thin film transistors, charge trapping layer, memory window, retention, endurance |
相關次數: | 點閱:92 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以五苯環有機薄膜電晶體為基礎,導入一高分子薄膜當作電荷捕捉層,結合高介電係數材料氧化鉿薄膜作為其絕緣層,製作成可低操作電壓的有機非揮發性記憶元件。其中使用四種高分子材料,包括聚乙烯醇(Poly(vinyl alcohol), PVA)、交聯結合的poly(4-vinylphenol)(C-PVP)、聚苯乙烯(Polystyrene, PS)與聚甲基丙烯酸甲酯(Polymethylmethacrylate, PMMA),皆利用溶液旋轉塗佈方式於氧化鉿表面製作薄膜,進而探討四種不同電荷捕捉層對記憶元件的影響,包括寫入/清除速度、記憶窗口、記憶保持能力、與耐久性。當寫入時間較長時,使用PVA當作電荷捕捉層時,其記憶窗口為四種元件中最大,約3.46 V;此外,從原子力顯微鏡圖上發現到PVA薄膜與成長於它之上的五苯環薄膜,其表面相當的粗糙,從表面能上也發現到兩者相當的不匹配,因而推論造成有較多的陷阱能態能捕捉電荷,進而增大其記憶窗口,但PVA薄膜相當的薄,因此對於記憶保持能力與耐久性來說,表現較為不佳。綜合所有能力而言,四種不同電荷捕捉層中最佳的為PMMA,其記憶窗口在經過20 V/1 ms的寫入速度下就有2.41 V的表現,對記憶保持能力而言,經過103 s後,其記憶窗口也只降至原本的81 %;重複操作元件40 次後,其記憶窗口並無多大變化,有較佳的耐久性表現。
最後本研究成功利用低溫(<200 ℃)、簡單化與成本低廉的製程方式製作出低操作電壓(< 25 V)的有機記憶元件。此外,本研究也進行元件的耐久性試驗,在重複操作40 次後,其記憶窗口變化不大,證明本研究所製作的有機記憶元件擁有優良的耐久能力。
We investigated organic non-volatile memory devices that are operated at low-voltage and are based on organic thin-film transistors (OTFTs) with pentacene as an active layer. Hafnium dioxide (HfO2) was used as the main gate dielectric to reduce operation voltage. Four kinds of polymer materials were used as the charge trapping layer, which was created via a spin-coating process on the HfO2 layer. The four kinds of polymer materials that were employed included poly(vinyl alcohol) (PVA), cross-linked poly(4-vinylphenol) (C-PVP), polystyrene (PS), and polymethylmethacrylate (PMMA). The electrical characteristics of the organic non-volatile memory devices, including memory window, program/erase speed, retention, and endurance, were also discussed.
We studied the influence of the surface properties of polymer charge trapping layers on the morphology of pentacene films and the electrical characteristics of the corresponding memory devices. When PVA was used as the charge trapping layer, the memory window of the device was the largest (i.e., 3.46 V) as compared to the memory windows when using the other polymer layers. Atomic force microscopy measurements indicate that the surface morphologies of PVA and the pentacene layer on PVA both exhibited a relatively high amount of surface roughness. Moreover, a large difference in surface energy was observed between the pentacene layer and the PVA surface. As a consequence, we suggest the possibility of a considerable amount of trap states in the pentacene/PVA interface, thereby causing a large threshold voltage shift in the device. Compared with other organic non-volatile memory devices, the device with the PMMA charge trapping layer shows superior electrical characteristics. Specifically, the device with PMMA has a 2.41 V memory window after a 20 V program operation for 1 sec, and approximately 81% of the memory window still remains after 103 sec. Additionally, good endurance properties were also observed after 40 program/erase cycles.
In conclusion, we have demonstrated a simple and inexpensive approach for the low-temperature fabrication (<200 ℃) of low-voltage operated (< 25 V) organic non-volatile memory devices with polymer charge trapping layers. These devices also show excellent endurance properties after multiple program/erase cycles.
[1] D. Kahng, and S. M. Sze, “ A floating gate and its application tomemory devices ”, IEEE Trans. Electron Devices, 14, p.629,1967.
[2] J. D. Blauwe, “ Nano-crystal Non-volatile Memory Devices ”, IEEE Trans. Nanotechnology, 1, p.72, 2002.
[3] M. H. White, D. A. Adams, and J. Bu, “ On the go with SONOS ”, Circuits and Devices Magazine, IEEE, 16, p.22, 2000.
[4] J. Bu, and M. H. White, “ Effects of two-step high temperature deuterium annealson SONOS nonvolatile memory devices ”, IEEE Electron Device Lett., 22, p.17, 2001.
[5] K. T. Chang, W. M. Chen, C. Swift, J. M. Higman, W. M. Paulson, and K. M.Chang, “ A new SONOS memory using source-side injection for programming ”, IEEE Electron Device Lett., 19, p.253, 1998.
[6] P. Xuan, M. She, B. Harteneck, A. Liddle, J. Bokor, and T. J. King,“ FinFET SONOS flash memory for embedded applications ”, IEDM Tech. Dig., p.609, 2003.
[7] T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi,Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “ Novel multi-bit SONOS type flash memory using a high-k charge trapping layer ”, VLSI Symp. Tech. Dig., p.27, 2003.
[8] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “ NROM: A novel localized trapping, 2-bit non-volatile memory cell ”, IEEE Electron Device Lett., 21, p.543, 2000.
[9] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “ Metal nanocrystal memories- Part I: device design and fabrication ”, IEEE Trans. Electron Devices, 49, p.1606, 2002.
[10] T. H. Hou, C. Lee, V. Narayanan, U. Ganguly, and E. C. Kan, “ Design optimization of metal nanocrystal memory- Part I: nanocrystal array engineering ”, IEEE Trans. Electron Devices, 53, p.3095, 2006.
[11] J. J. Lee, and D. -L. Kwong, “ Metal Nano-crystal Memory with High-k Tunneling Barrier for Improved Data Retention ”, IEEE Trans. Electron Devices, 52, p.507, 2005.
[12] S. Choi, S. Sl. Kim, M. Chang, H. Hwang, S. Jeon, and C Kim, “ Highly thermally stable TiN nanocrystals as charge trapping sites for non-volatile memory device applications ”, Appl. Phys. Lett., 86, p.123110, 2005.
[13] R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, “ Nonvolatile Si quantum memory with self-aligned doubly-stacked dots ”, IEEE Trans. Electron Devices, 49, p.1392, 2002.
[14] T. Baron, B. Pellissier, L. Perniola, F. Mazen, J. M. Hartmann, and G. Polland, “ Chemical vapor deposition of Ge nanocrystals on SiO2 ”, Appl. Phys. Lett., 83, p.1444, 2003.
[15] Q. Wan, C. L. Lin, W. L. Liu, and T. H. Wang, “ Structural and electrical characteristics of Ge nanoclusters embedded in Al O gate dielectric ”, Appl. Phys. Lett., 82, p.4708, 2003.
[16] C. Y. Ng, T. P. Chen, L. Ding, and S. Fung, “ Memory Characteristics of MOSFETs With Densely Stacked Silicon Nanocrystal Layers in the Gate Oxide Synthesized by Low-Energy Ion Beam ”, IEEE Electron Device Lett., 27, p.231, 2006.
[17] M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L.Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, “ Synthesisand characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices ”, Appl. Phys. Lett., 79, p.433, 2001.
[18] L. Ding, T. P. Chen, Y. Liu, M. Yang, and J. I. Wong, “ Influence of nanocrystal size on optical properties of Si nanocrystals embedded in SiO2 synthesized by Si ion implantation ”, Journal of Appl. Phys., 101, p.103525, 2007.
[19] T. Y. Kim, N. M. Park, K. H. Kim, and G. Y. Sung, “ Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films ”, Appl. Phys. Lett., 85, p.5355, 2004.
[20] R. Waser, “ Resistive non-volatile memory devices (Invited Paper) ”, Microelectronic Engineering, 86, p.1925, 2009.
[21] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “ Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application ”, Nano Lett., 9, p.1636, 2009.
[22] Y. W. Dong, X. Ji, W. Xu, J. Q. Tang, and P. Guo, “ Resistive Switching and Memory Effect Based on CuSCN Complex Layer Created Through Interface Reactions ”, Electrochem. Solid State Lett., 12, p.H54, 2009.
[23] F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “ Nonvolatile resistive switching memory based on amorphous carbon ”, Appl. Phys. Lett., 96, p.163505, 2010.
[24] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “ Light-emitting diodes based on conjugated polymers ”, Nature, 347, p.539, 1990.
[25] M. Ichimura, S. H. No, T. Ishibashi, N. Ueda, and S. Tamura, “ High performance OLED panels for Sony CLIE PDA: development of red emitter and super top emission structure ”, Proceedings of the SPIE, 5937, p.593703, 2005.
[26] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “ Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology ”, Adv. Funct. Mater., 15, p.1617, 2005.
[27] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “ Bulk heterojunction solar cells with internal quantum efficiency approaching 100% ”, Nat. Photonics, 3, p.297, 2009.
[28] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “ Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance ”, Appl. Phys. Lett., 88, p.162109, 2006.
[29] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, “ Ultralow-power organic complementary circuits ”, Nature, 445, p.745, 2007.
[30] L. P. Ma, J. Liu, and Y. Yang, “ Organic electrical bistable devices and rewritable memory cells ”, Appl. Phys. Lett., 80, p.2997, 2002.
[31] J. Ouyang, C. W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, “ Programmable polymer thin film and non-volatile memory device ”, Nat. Mater., 3, p.918, 2004.
[32] K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, and D. Y. Kim, “ Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret ”, Adv. Mater., 18, p.3179, 2006.
[33] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, and D. Y. Kim, “ Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory ”, Adv. Funct. Mater., 18, p.3678, 2008.
[34] K. J. Baeg, Y. Y. Noh, and D. Y. Kim, “ Charge transfer and trapping properties in polymer gate dielectrics for non-volatile organic field-effect transistor memory applications ”, Solid-State Electron., 53, p.1165, 2009.
[35] S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, “ Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers ”, Appl. Phys. Lett., 96, p.33302, 2010.
[36] Y. M. Kim, Y. S. Park, A. O’Reilly, and J. S. Lee, “ Organic Field-Effect Transistor-Based Nonvolatile Memory Devices Having Controlled Metallic Nanoparticle/Polymer Composite Layers ”, Electrochem. Solid State Lett., 13, p.H134, 2010.
[37] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “ A flexible organic pentacene nonvolatile memory based on high-k dielectric layers ”, Appl. Phys. Lett., 93, p.233302, 2008.
[38] F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, “All-Polymer Field-Effect Transistor Realized by Printing Techniques ”, Science, 265, p.1684, 1994.
[39] K. J. Hubbard, and D. G. Schlom, “ Thermodynamic stability of binary oxides in contact with silicon ”, J. Mater. Res., 11, p.2757, 1996.
[40] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “ High-k gate dielectrics: Current status and materials properties considerations ”, J. Appl. Phys., 89, p.5243, 2001.
[41] C. R. Kagan, and P. Andry, “ Thin-Film Transistors ”, Marcel Dekker INC, 2003.
[42] S.M. Sze, “ Semiconductor Devices Physics and Technology 2nd edition ”, John Wiley & Sons INC., 2001.
[43] M. A. Lampert, “ Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps ”, Physical Review, 103, p.1648, 1956.
[44] B. E. Deal, “ Standardized terminology for oxide charges associated with thermally oxidized silicon ”, IEEE Trans. Electron Dev., 27, p.606, 1980.
[45] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “ Flash Memory Cells-An Overview ”, Proceedings of The IEEE, 85, p.1248, 1997.
[46] 買昱椉,五環素薄膜初期成長機制研究,國立成功大學博士論文,2007
[47] T. B. Massalski, J. L. Murray, L. H. Bennet, H. Baker, “ Binary Alloy Phase Diagrams ”, American Society for metals, Ohio, 1987.
[48] J. Aarik, A. Aidla, H. Mändar, T. Uustare, K. Kukli, and M. Schuisky, “ Phase transformations in hafnium dioxide thin films grown by atomic layer deposition at high temperatures ”, Appl. Surf. Sci., 173, p.15, 2001.
[49] H. Kim, P. C. Mclntyre, and K. C. Saraswat, “ Effect of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition ”, Appl. Phys. Lett., 82, p.106, 2003.
[50] M. Debucquoy, M. Rockelé, J. Genoe, G.H. Gelinck, and P. Heremans, “ Charge trapping in organic transistor memories: On the role of electrons and holes ”, Org. Electron., 10, p.1252, 2009.
[51] J. N. Israelachvili, “ Intermolecular and surface forces 2nd edition”, Academic Press, London, UK, 1992.
[52] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, “ Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics ”, Minnesota INC, 1995.
[53] W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu, and C. C. Liao, “ The effect of surface free energy in gate dielectric for pentacene-based thin-film transistors ”, Appl. Phys. Lett., 89, p.112126, 2006.
[54] M. F. Mabrook, Y. Yun, C. Pearson, D. A. Zeze, and M. C. Petty, “ A pentacene-based organic thin film memory transistor ”, Appl. Phys. Lett., 94, p.173302, 2009.