簡易檢索 / 詳目顯示

研究生: 張正傑
Chang, Cheng-Chieh
論文名稱: 以基於變異數之QRS偵測器與最大似然估測法之即時心跳偵測
Real-Time Heartbeat Detection with Variance-Based QRS Detector and Maximum Likelihood Estimation
指導教授: 卿文龍
Chin, Wen-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 52
中文關鍵詞: 貝氏架構即時心跳偵測MIT-BIH心律不整資料庫QT資料庫心電圖基於變異數之QRS偵測器最大似然偵測法QRS複合波
外文關鍵詞: real-time heartbeat detection, MIT-BIH arrhythmia database, QT database, electrocardiogram, VBD, MLE,, QRS complex
相關次數: 點閱:82下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今嚴重高齡化的社會環境中,老人看護及居家看護的議題被廣泛的討論,然而在臨床上,大部份的心臟疾病是偶發性的,若能即時監測、記錄病人心跳的發生,隨即可讓醫療人員進行分析、評估甚至是治療、搶救。然而由於很大的異常心跳之變異會導致偵測的困難度提升,因此,即時(real-time)的偵測出病人心跳的發生是十分重要且具挑戰性的議題。
    與傳統的演算法相比,本篇側重於開發一個基於貝氏架構(Bayesian framework)下的新方法。具體來說,本篇提出在心律不整的心電圖中(electrocardiogram, ECG),利用基於變異數之QRS偵測器(variance-based QRS detector, VBD)結合最大似然估測法(maximum likelihood estimation, MLE)實現即時心跳偵測的演算法。首先,ECG訊號經由訊號前處理移除雜訊干擾,而後利用VBD及MLE由ECG訊號起始時間開始連續地遞迴偵測出往後QRS複合波的位置、寬度及週期。
    使用MIT-BIH心律不整資料庫所提供的48條ECG訊號記錄帶及其參考標籤進行模擬及驗證,結果得到的偵測靈敏度(sensitivity, Se)為99.85%,預測力(positive predictivity, P+)為99.85%及0.29%的偵測失敗率(failed detection, Fd)。本篇也使用了QT資料庫所提供的105條ECG訊號記錄帶及其參考標籤進行模擬及驗證,偵測結果得到的偵測靈敏度(sensitivity, Se)為99.96%,預測力(positive predictivity, P+)為99.94%及0.1%的偵測失敗率(failed detection, Fd)。

    The real-time heartbeat detection in electrocardiogram (ECG) signal is still an important and challenging issue due to the advancement of medical equipment and healthcare. In contrast to conventional works, this work focuses on developing a new methodology based on the Bayesian framework. More specifically, we propose two new algorithms for the real-time heartbeat detection, i.e., variance-based QRS detector (VBD) and maximum-likelihood estimation (MLE). Firstly, we reduce the physiological interference in ECG signal through signal preprocessing using a band-pass filter. Then, continuously detect the onset, duration, and period of a QRS complex with the proposed VBD and MLE. The algorithms are evaluated and verified by two database, such as MIT-BIH arrhythmia and QT database. For the 48 records of MIT-BIH arrhythmia database, the obtained detection result shows a sensitivity, Se, of 99.85% and a positive predictivity, P+, of 99.85%. For the 105 records of QT database, the obtained detection result shows a sensitivity, Se , of 99.96% and a positive predictivity, P+, of 99.94%, is accurate as well.

    中文摘要 i 英文摘要 ii 誌謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 符號說明 xiii 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻探討 3 1.4 論文架構 8 第二章 生理訊號與資料庫 9 2.1 心電圖介紹 9 2.1.1 心電圖原理 9 2.1.2 心電圖波型 12 2.1.3 心電圖的雜訊 15 2.2 生理訊號資料庫 17 2.2.1 MIT-BIH心律不整資料庫(Arrhythmia Database) 20 2.2.2 QT資料庫 23 第三章 演算法架構與訊號模型 24 3.1演算法架構 24 3.2訊號模型 25 第四章 即時心跳偵測演算法 29 4.1訊號前處理(Signal Preprocessing) 29 4.2基於變異數之QRS偵測器(Variance-Based QRS Detector) 31 4.3最大似然估測法(Maximum Likelihood Estimation) 34 4.4偵測步驟流程 39 第五章 軟體模擬與驗證 40 第六章 結論與未來展望 48 參考文獻 49

    [1] B. U. Köhler, C. Hennig, and R. Orglmeister, “The principles of software QRS detection,” IEEE Eng. Med. Biol. Mag., vol. 21, pp. 42-57, Jan./Feb. 2002.
    [2] N. V. Thakor, J. G. Webster, W. J. Tompkins, "Estimation of QRS complex power spectra for design of a QRS filter", IEEE Trans. Biomed. Eng., vol. BME-31, pp. 702-706, Nov. 1984
    [3] J. Pan and W. J. Tompkins, “A real-Time QRS detection algorithm,” IEEE Trans. Biomed. Eng., pp. 230-236, Mar. 1985.
    [4] L. Keselbrener, M. Keselbrener, and S. Akselrod, “Nonlinear high pass filter for R-wave detection in ECG signal,” Med. Eng. Phys., vol. 19, no. 5, pp. 481-484, Jun. 1997.
    [5] Y.-C. Yeh and W.-J. Wang, “QRS complexes detection for ECG signal: The difference operation method,” Comput. Methods Programs Biomed., vol. 91, no. 3, pp. 245-254, Sep. 2008.
    [6] F. Jager and U. Pangerc, “Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters,” Physiol. Meas., vol. 36, no. 8, pp. 1645-1664, Jul. 2015.
    [7] C.S. Burrus, H. Guo, and R.A. Gopinath, Introduction to Wavelets and Wavelet Transforms. Upper Saddle River, NJ: Prentice Hall, 1998.
    [8] G. Strang and T. Nguyen, Wavelets and Filter Banks. Cambridge, MA: Wellesley-Cambridge Press, 1996.
    [9] C. Li, C. Tai, and C. Zheng, “Detection of ECG characteristic points using wavelet transforms,” IEEE Trans. Biomed. Eng., pp. 21-28, 1995.
    [10] G. F. Boudreaux-Bartels, R. Murray, and S. Kadambe, “Wavelet transform-based QRS complex detector,” IEEE Trans. Biomed. Eng., vol. 46, no. 7, pp. 838-848, Jul. 1999.
    [11] J. P. Martinez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, “A wavelet-based ECG delineator: Evaluation on standard databases,” IEEE Trans. Biomed. Eng., vol. 51, no. 4, pp. 570–581, Apr. 2004.
    [12] Z. Zidelmal, A. Amirou, M. Adnane, and A. Belouchrani, ‘‘QRS detection based on wavelet coefficients,’’ Comput. Methods Programs Biomed., vol. 107, no. 3, pp. 490–496, Sep. 2012.
    [13] P.S. Hamilton and W.J. Tompkins, “Adaptive matched filtering for QRS detection,” in Proc. IEEE EMBC’88, pp. 147-148, 1988.
    [14] R. Vullings, B. de Vries, and J. W. M. Bergmans, “An adaptive Kalman filter for ECG signal enhancement,” IEEE Trans. Biomed. Eng., vol. 58, no. 4, pp. 1094–1103, Apr. 2011.
    [15] S. Jain, M.K. Ahirwal, A. Kumar, V. Bajaj, G.K. Singh “QRS detection using adaptive filters: A comparative study” ISA Trans., vol. 66, pp. 362–375, Jan. 2017.
    [16] S. Luo, T. Q. Nguyen, V. X. Afonso, and W. J. Tompkins, “ECG beat detection using filter banks,” IEEE Trans. Biomed. Eng., vol. 46, no. 2, pp. 192-202, Feb. 1999.
    [17] I. I. Christov, “Real time electrocardiogram QRS detection using combined adaptive threshold,” Biomed. Eng. Online, vol. 3, no. 1, p. 28,Aug. 2004.
    [18] C.-I. Ieong et al., “A 0.83-µW QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35-µm CMOS,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 6, pp. 586–595, Dec. 2012.
    [19] D. B. Nielsen, K. Egstrup, J. Branebjerg, G. B. Andersen, and H. B. D. Sorensen, “Automatic QRS complex detection algorithm designed for a novel wearable, wireless electrocardiogram recording device,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug./Sep. 2012, pp. 2913–2916
    [20] R. Gutierrez-Rivas, J. J. Garcia, W. P. Marnane, and A. Hernandez, “Novel Real-Time Low-Complexity QRS Complex Detector Based on Adaptive Thresholding,” IEEE Sens. J., vol. 15, no. 10, pp. 6036–6043, Oct. 2015.
    [21] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C.P. Ch. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000.
    [22] R. Mark and G. Moody, MIT-BIH Arrhythmia Database 1997 [Online]. Available: http://ecg.mit.edu/dbinfo.html
    [23] P. Laguna, R. Mark, A. Goldberger, and G. Moody, “A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG,” in Computers in Cardiology 1997. Los Alamitos, CA: IEEE Computer Society Press, 1997, pp. 673–676.
    [24] G. B. Moody and R. G. Mark, “The impact of the mit/bih arrhythmia database,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50, May.-Jun. 2001.
    [25] A. Taddei, A. Biagini, i, G.Distante, M.Emdin, M.G.Mazzei, P.Pisani, N.Roggero, M.Var, R.G.Mark, G.B.Moody, L.Braaksma, C.Zelenberg, C.Marchesi, “The European ST-T database: Development. distribution and use.” in Computers in Cardiology. IEEE Computer Society Press, 1991, pp. 177-180.
    [26] V. X. Afonso and W. J. Tompkins, “ECG QRS Detection,” Biomedical Digital Signal Processing, pp. 236-264, 1993.
    [27] A. E. Cetin, O. N. Gerek, and Y. Yardimci, “Equiripple FIR filter design by the FFT algorithm,” IEEE Signal Process. Mag., vol. 14, no. 2, pp. 60–64, Mar. 1997.
    [28] F. DeBoer, M. Elgendi, and M. Jonkman, “Frequency bands effects on QRS detection,” Third International Conference on Bio-inspired Systems and Signal Processing, Valencia, Spain, January 20-23, 2010.

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE