| 研究生: |
王薇婷 Wang, Wei-Ting |
|---|---|
| 論文名稱: |
臺灣南部地區午後熱對流分析 -以2018年7月27日為例- Analysis of Afternoon Convection in Southern Taiwan: A Case Study of July 27, 2018 |
| 指導教授: |
陳佳宏
Chen, Chia-Hung 宋偉國 Soong, Wei-Kuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 午後熱對流 、天氣研究與預報模式 、降雨雷達 |
| 外文關鍵詞: | Afternoon convection, WRF, rainfall radar |
| 相關次數: | 點閱:75 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
午後熱對流為臺灣空軍各機場夏季期間的守視重點,2018年7月27日,臺灣南部地區的午後熱對流引發了劇烈的天氣,且於1600LT岡山機場編報西面有漏斗雲,藉此探討此類天氣系統的生成機制及其影響。臺灣夏季的午後熱對流常常導致短時間內的強降雨和雷暴,在南部地區影響尤為明顯,本研究分析了在高壓影響下南部地區熱對流的發展過程。當天,臺灣地區出現冷心低壓,高空與低空的溫差增大,導致大氣環境不穩定度增加,使得對流發展時獲得更多能量,促使劇烈天氣的發生。
研究方法包括分析從地面到200hPa各層的分析圖,並利用衛星雲圖和雷達回波圖了解當日對流的發展位置及方向。觀測資料指出,高屏地區的特定地形如嘉南平原、屏東平原與丘陵地形,使得對流雲系在地形抬升的情況下增強。午後熱對流的發生時間主要集中在1400至2200LT,且容易於西北至東北面的丘陵地區發生。透過綜合天氣分析,觀測資料顯示了臺灣南部當日的主要風場及高壓影響。根據衛星雲圖及雷達回波圖的分析,顯示對流胞逐步擴展並向北移動,特別集中在高雄與臺南山區,至當日1600LT後時強度逐漸減弱。
此外,透過累積雨量圖的分析,本次對流降雨主要集中在臺南與高雄山區,雨量達到70毫米。由斜溫圖分析,指出熱力指數顯示大氣極不穩定,CAPE值高達1796.6,顯示大氣環境相當有利於強對流系統的生成。數值模擬進一步顯示,高屏山區的風場輻合有助於對流雲系的發展,並於1000LT時達到強度最高。
最後與TAHOPE實驗中2022年6月25日的個案進行差異比較,包含地形效應、低層輻合帶位置及大氣穩定性指數的變化,結果顯示,兩次案例均呈現出對流系統受地形與風場輻合共同影響的特徵。本研究將模擬結果與觀測資料進行對比驗證,旨在提升對類似天氣系統的理解,並為未來的模式改進提供參考。
Afternoon convection during summer in Taiwan, particularly in the southern region, poses significant challenges to airfield operations. On July 27, 2018, severe weather, including a funnel cloud near the Kaohsiung Airport at 1600 LT, was observed in the southern part of Taiwan. This study explores the development mechanisms and impacts of such weather systems. During summer, afternoon convection often leads to intense rainfall and thunderstorms, especially in southern Taiwan. The analysis examines the convective development processes under high-pressure conditions, where a cold-core low and increased temperature difference between the upper and lower atmosphere increase instability, leading to more favorable conditions for convection and severe weather.
Key weather analyses, including surface to 200 hPa charts, satellite imagery, and radar data, were employed to track the convection’s location and movement. Results indicate that the specific topography of the Chia-Nan Plain and the Pingtung Plain play significant roles in enhancing convection via terrain uplift. Convection occurred mostly between 1400 and 2200 LT, and frequently in the hilly areas from northwest to northeast. The accumulated rainfall map indicated that significant rainfall (up to 70 mm) occurred in the Tainan and Kaohsiung mountainous regions. Furthermore, the thermodynamic indices showed a highly unstable atmosphere, with a CAPE value of 1796.6, favoring the development of strong convective systems. Numerical simulations further revealed that the convergence of winds over the mountainous area of Kaohsiung and Pintung contributed to the development of convection.
This study also compares the 2018 event with a similar case on June 25, 2022, from the TAHOPE experiment. Differences in terrain effects, lower-level convergence patterns, and atmospheric stability indices are discussed, demonstrating the combined influence of topography and wind field convergence on the convection system in both cases.
地球科學研究推動中心,2022:“臺灣區域豪雨觀測與預報實驗計畫—臺灣大學大氣科學系楊明仁教授與團隊研究成果”(http://esrpc.ncu.edu.tw/public/tw/ftopic/ftopic_detail/3)。
李紀恩,劉崇治,趙俊傑,葉南慶,2005:“衛星資料在夏季午後對流潛勢環境之初步分析”,大氣科學,33卷,189-214。
李子儀、曾德晉、黃國禎、吳俊緯,2021:“氣象X-band降雨雷達對機場天氣守視效益”,氣象預報與分析,249期,7-16。
呂冠毅、潘宜輝、葉南慶,2016:“精進空軍機場於午後對流預報之前兆分析”,氣象預報與分析,226-2期,13-19。
林則銘,1975:“危害飛行氣象因素客觀預報之研究-雷雨部分”,空軍氣象聯隊研究報告第001號。
林品芳、張保亮、周仲島,2012:“弱綜觀環境下臺灣午後熱對流特徵及其客觀預報”,大氣科學,40卷,77-108。
林志榮、陳建達、陳益盛、黃柏豪、林冠宏,2019:“臺南地區雷雨發生之天氣型態”,氣象預報與分析,239-2期,23-32。
陸可揚、楊宏宇、林裕豐,2014:“精進空軍機場於午後對流預報之前兆分析”,氣象預報與分析,219-2期,4-28。
梁晏彰、鍾高陞、陳立昕,2022:“分析不同微物理參數化方案之系集預報不確定性:SoWMEX IOP8 午後對流個案”,大氣科學,50卷,1-35。
張孝怡、朱宗良、陳建達、黃淯欣,2022:“嘉義機場X-band雙偏極化都卜勒氣象雷達”,氣象預報與分析,251期,24-36。
楊明仁、鄭明典、黃清勇、林沛練、林博雄、李清勝、王重傑、劉清煌、呂國臣、張保亮、黃椿喜、侯昭平、鍾高陞、張偉裕、林品芳,2023:“臺灣區域豪雨觀測與預報實驗(TAHOPE)簡介”,112年天氣分析與預報研討會。
劉博凱,2018:“利用WRF模式模擬雙北都會區夏季暴雨觀測預報實驗:2017/07/01 午後熱對流個案”,碩士論文。
鄭學勇,2005:“高雄地區常見的天氣現象”,飛航天氣,3期,48-56。
鍾蕎安,2018:“2016年4月13日中尺度系統影響飛安之氣象要素個案模擬”,碩士論文。
Chung-Chieh Wang, Chu-Ying Kung, Cheng-Shang Lee, and George Tai-Jen Chen, 2012:Development and Evaluation of Mei-Yu Season Quantitative Precipitation Forecasts in Taiwan River Basins Based on a Conceptual Climatology Model
Morrison, G. Thompson, and V. Tatarskii, 2009:Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two Moment Schemes. Mon. Wea. Rev.,137, 991-1007.
Reisener, J. M., and P. K. Smolarkiewicz, 1994: Thermally forced low Froude number flow past three dimensional ob-stacles. J Atmos. Sci., 51, 117-133.
Smolarkiewicz, P., and R. Rotunno, 1990:Low Froude number flow past threedimensional obstacles. Part Upwind flow reversal zone. J. Atmos. Sci., 47, 1498-1511
Xue, M., Y. Jung, and G. Zhang, 2010: State estimation of convective storms with a two-moment microphysics scheme and an ensemble Kalman filter:Experiments with simulated radar data. Quart. J. Roy. Meteor. Soc., 136,685-700.