| 研究生: |
劉欣宜 Liu, Hsin-Yi |
|---|---|
| 論文名稱: |
利用第三型纖維黏結蛋白的第十個模組設計對整合素αvβ3具專一性的拮抗劑 Design and characterization of integrin αvβ3-specific antagonist using the tenth module of fibronectin type III |
| 指導教授: |
莊偉哲
Chuang, Woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 整合蛋白 、第三型纖維黏結蛋白 |
| 外文關鍵詞: | integrin αvβ3, fibronectin type III |
| 相關次數: | 點閱:48 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
整合蛋白是一種細胞表面黏著受器,其功能是影響細胞的黏著、遷移跟生長。纖維黏結蛋白是一種細胞外基質的糖蛋白,會與整合蛋白作用。纖維黏結蛋白的組成是由三種不同類別的重複性單元所組成,包括12種第一型、2種第二型、15到17種第三型。特別的是,第三型纖維黏結蛋白的第十個模組對於整合蛋白αvβ3具有低的親和力。我們若要利用第三型纖維黏結蛋白設計對於整合蛋白的藥物,必須使其具有高穩定性、選擇性以及活性。因此我們利用第三型纖維黏結蛋白的第十個模組作為鷹架蛋白,去設計對於整合蛋白αvβ3具有專一性的拮抗劑。在本實驗中,我們將:(1)套用實驗室對於去整合蛋白的研究出的整合蛋白特殊辨識序列或者是之前研究篩選出的對於整合蛋白的特殊辨識序列到第三型纖維黏結蛋白的第十個模組上,(2)並增加一對雙硫鍵於RGD loop上,並改變其雙硫鍵的鍵結模式,(3)接著進行對整合蛋白αvβ3具有專一性的第三型纖維黏結蛋白第十個模組蛋白突變株作特性的分析,(4)最後也將第三型纖維黏結蛋白第十個模組的蛋白突變株應用於癌症的研究上。現在我已利用大腸桿菌系統成功表達20種以上的第三型纖維黏結蛋白第十個模組蛋白突變株,並得到純的蛋白產物。在功能分析上顯示所有的蛋白突變株對於抑制血小板凝集能力是低的,顯示其較不會引起血小板缺乏症。在抑制細胞黏著試驗中,證明了套用去整合蛋白序列的FN-III10(PRGDMPD)突變株對於整合蛋白αvβ3具有高度的親和力。當加入一對雙硫鍵鍵結在RGD loop上,顯示整合蛋白αvβ3傾向於喜好CX7C的patterns,而非CX4C 及CX8C patterns。而且FN-III10(PRGDMPD)選擇性地抑制整合蛋白αvβ3,其IC50值為101 nM。利用量熱儀以及硫酸胺鹽沉澱法測試其熱穩定度及溶解度,分別顯示Tm質與溶解度:FN-III10(CPRGDMPDC)(85℃)(27.8 mg/ml) > FN-III10(81℃)(7.3 mg/ml) > FN-III10(PRGDMPD)(74℃)(5.3 mg/ml),表示當加入一對雙硫鍵鍵結於RGD loop上,可以增加第三型纖維黏結蛋白第十個模組蛋白突變株的熱穩定性和溶解度。再來,利用NMR技術分析證明了FN-III10(CPRGDMPDC)具有正確的摺疊以及動力學分析指出其RGD loop具高穩定性,因此較能辨識整合蛋白αvβ3。此外,在癌症研究上,由體外試驗證明了FN-III10(CPRGDMPDC)可以抑制A375細胞的遷移能力以及HUVEC細胞的tube生成。在體內試驗中,FN-III10(CPRGDMPDC)在減少Lewis lung cancer cells在C57/B6老鼠身上的腫瘤生長上的結果沒有顯著的意義,但仍可以延長老鼠的壽命。總結來說,我們已經成功的將第三型纖維黏結蛋白第十個模組蛋白改變成對於整合蛋白αvβ3具有高度親和力、選擇性,並且具有高的熱穩定性和溶解度。我們的結果顯示我們對於整合蛋白αvβ3專一性的第三型纖維黏結蛋白第十個模組蛋白突變株,較先前所發表的FN-III10(PRGDWNEG)好。此外,如何應用這個專一性的蛋白突變株於整合蛋白αvβ3相關的疾病的研究,也正在進行中。
Integrins are cell-surface adhesion receptors that affect cell adhesion, migration and proliferation. Fibronectin (FN) is an extracellular matrix glycoprotein that binds to integrins. FN is composed of three different types of homologous repeating domains, including FN-I, FN-II, and FN-III. FN contains 12 of FN-I, 2 of FN-II, and 15-17 of FN-III repeats. In particular, FN-III10 can bind to integrin αvβ3 with low affinity. To use FN-III10 as integrin drugs, it is essential to engineer them to have high stability, selectivity, and potency. Therefore, we propose to use FN-III10 as the scaffold to design integrin αvβ3-specific antagonists. In this study I: (1) incorporate the integrin-specific recognition sequences into FN-III based on the results of our study on disintegrin or reported sequences; (2) modify disulfide bond pattern (CXnC) within RGD loop; (3) characterize integrin αvβ3-specific FN-III10 variants; and (4) study anti-tumor activity of integrin αvβ3-specific FN-III10 variants. Now I have expressed > 20 FN-III10 variants in E. coli and purified them to homogeneity. Functional analysis showed that all FN-III10 variants had lower activity in inhibiting platelet aggregation, suggesting that they exhibited low thrombocytopenia effect. Cell adhesion inhibition study demonstrated that FN-III10(PRGDMPD) mutant incorporating disintegrin sequence had higher affinity to integrin αvβ3. The incorporation of disulfide linkage into the RGD loop showed that integrin v3-specific FN-III10 variants preferred the CX7C but not CX4C and CX8C patterns, and FN-III10(CPRGDMPDC) selectively inhibited integrin αvβ3 with an IC50 value of 93 nM. Differential scanning calorimetry analysis and solubility measurements by ammonium sulfate precipitation showed that their Tm values and solubility FN-III10(CPRGDMPDC) (85 oC; 27.8 mg/ml) > FN-III10 (81oC; 7.3 mg/ml) > FN-III10(PRGDMPD) (74 oC; 5.3 mg/ml). These results indicate that the incorporation of a disulfide bond into the RGD loop of FN-III10 can increase its thermostability and solubility. NMR and dynamics analyses demonstrated that FN-III10(CPRGDMPDC) has the correct folding and the RGD loop of FN-III10(CPRGDMPDC) exhibited higher rigidity with preference for integrin v3 binding. Integrin αvβ3-specific FN-III10 (CPRGDMPDC) protein can inhibit A375 cell migration and HUVEC tube formation in vitro. The xenograft mouse model showed that it only slightly reduced the growth of Lewis lung cancer cells in C57/B6 mice; however, it can prolong their survival in vivo. In conclusions, we have successfully engineered FN-III10 scaffold to produce an integrin αvβ3-specific variant with high potency, selectivity, thermostability, and solubility. Our results also showed that this integrin αvβ3-specific FN-III10 variant is superior than the reported variant, FN-III10(PRGDWNEG). The further optimization of integrin v3-specific FN-III10 variant for the treatment of integrin αvβ3-related diseases is ongoing.
Aota, S., Nomizu, M., and Yamada, K.M. (1994). The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. The Journal of biological chemistry 269, 24756-24761.
Arnaout, M.A., Mahalingam, B., and Xiong, J.P. (2005). Integrin structure, allostery, and bidirectional signaling. Annual review of cell and developmental biology 21, 381-410.
Avraamides, C.J., Garmy-Susini, B., and Varner, J.A. (2008). Integrins in angiogenesis and lymphangiogenesis. Nature reviews Cancer 8, 604-617.
Barczyk, M., Carracedo, S., and Gullberg, D. (2010). Integrins. Cell and tissue research 339, 269-280.
Bloom, L., and Calabro, V. (2009). FN3: a new protein scaffold reaches the clinic. Drug discovery today 14, 949-955.
Bork, P., and Doolittle, R.F. (1992). Proposed acquisition of an animal protein domain by bacteria. Proceedings of the National Academy of Sciences of the United States of America 89, 8990-8994.
Bork, P., Holm, L., and Sander, C. (1994). The immunoglobulin fold. Structural classification, sequence patterns and common core. Journal of molecular biology 242, 309-320.
Brooks, P.C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F.H., and Cheresh, D.A. (1995). Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. The Journal of clinical investigation 96, 1815-1822.
Campbell, I.D., and Spitzfaden, C. (1994). Building proteins with fibronectin type III modules. Structure 2, 333-337.
Carr, P.A., Erickson, H.P., and Palmer, A.G., 3rd (1997). Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin.
Structure 5, 949-959.
Chatterjee, S., Brite, K.H., and Matsumura, A. (2001). Induction of apoptosis of integrin-expressing human prostate cancer cells by cyclic Arg-Gly-Asp peptides. Clinical cancer research : an official journal of the American Association for Cancer Research 7, 3006-3011.
Chatterjee, S., Matsumura, A., Schradermeier, J., and Gillespie, G.Y. (2000). Human malignant glioma therapy using anti-alpha(v)beta3 integrin agents. Journal of neuro-oncology 46, 135-144.
Chen, C.Y., Shiu, J.H., Hsieh, Y.H., Liu, Y.C., Chen, Y.C., Jeng, W.Y., Tang, M.J., Lo, S.J., and Chuang, W.J. (2009). Effect of D to E mutation of the RGD motif in rhodostomin on its activity, structure, and dynamics: importance of the interactions between the D residue and integrin. Proteins 76, 808-821.
Costa, P., and Parsons, M. (2010). New insights into the dynamics of cell adhesions. International review of cell and molecular biology 283, 57-91.
Dennis, M.S., Carter, P., and Lazarus, R.A. (1993). Binding interactions of kistrin with platelet glycoprotein IIb-IIIa: analysis by site-directed mutagenesis. Proteins 15, 312-321.
Desgrosellier, J.S., and Cheresh, D.A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature reviews Cancer 10, 9-22.
Dickinson, C.D., Veerapandian, B., Dai, X.P., Hamlin, R.C., Xuong, N.H., Ruoslahti, E., and Ely, K.R. (1994). Crystal structure of the tenth type III cell adhesion module of human fibronectin. Journal of molecular biology 236, 1079-1092.
Faull, R.J., Du, X., and Ginsberg, M.H. (1994). Receptors on platelets. Methods in enzymology 245, 183-194.
Felding-Habermann, B., Fransvea, E., O'Toole, T.E., Manzuk, L., Faha, B., and Hensler, M. (2002). Involvement of tumor cell integrin alpha v beta 3 in hematogenous metastasis of human melanoma cells. Clinical & experimental metastasis 19, 427-436.
Frokjaer, S., and Otzen, D.E. (2005). Protein drug stability: a formulation challenge. Nature reviews Drug discovery 4, 298-306.
Getmanova, E.V., Chen, Y., Bloom, L., Gokemeijer, J., Shamah, S., Warikoo, V., Wang, J., Ling, V., and Sun, L. (2006). Antagonists to human and mouse vascular endothelial growth factor receptor 2 generated by directed protein evolution in vitro. Chemistry & biology 13, 549-556.
Goodman, S.L., and Picard, M. (2012). Integrins as therapeutic targets. Trends in pharmacological sciences 33, 405-412.
Harpez, Y., and Chothia, C. (1994). Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J Mol Biol 238, 528±539.
Humphries, M.J. (2001). Cell-substrate adhesion assays. Current protocols in cell biology / editorial board, Juan S Bonifacino [et al] Chapter 9, Unit 9 1.
Humphries, M.J., and Mould, A.P. (2001). Structure. An anthropomorphic integrin. Science 294, 316-317.
Hynes, R.O., and Yamada, K.M. (1990). Fibronectins: Multifunctional Modular Glycoproteins. THE JOURNAL OF CELL BIOLOGY.
Johansson, S., Svineng, G., Wennerberg, K., Armulik, A., and Lohikangas, L. (1997). Fibronectin-integrin interactions. Frontiers in bioscience : a journal and virtual library 2, d126-146.
Jones, E.Y. (1993). The immunoglobulin superfamily. Curr Opin Struct Biol 3, 846-852.
Kim, S., Bell, K., Mousa, S.A., and Varner, J.A. (2000a). Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. The American journal of pathology 156, 1345-1362.
Kim, S., Harris, M., and Varner, J.A. (2000b). Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. The Journal of biological chemistry 275, 33920-33928.
Koide, A., Bailey, C.W., Huang, X., and Koide, S. (1998). The fibronectin type III domain as a scaffold for novel binding proteins. Journal of molecular biology 284, 1141-1151.
Krammer, A., Lu, H., Isralewitz, B., Schulten, K., and Vogel, V. (1999). Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proceedings of the National Academy of Sciences of the United States of America 96, 1351-1356.
Lee, J.O., Rieu, P., Arnaout, M.A., and Liddington, R. (1995). Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80, 631-638.
Lipovsek, D. (2011). Adnectins: engineered target-binding protein therapeutics. Protein engineering, design & selection : PEDS 24, 3-9.
Luo, B.H., Carman, C.V., and Springer, T.A. (2007). Structural basis of integrin regulation and signaling. Annual review of immunology 25, 619-647.
Main, A.L., Harvey, T.S., Baron, M., Boyd, J., and Campbell, I.D. (1992). The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 71, 671-678.
Mamluk, R., Carvajal, I.M., Morse, B.A., Wong, H., Abramowitz, J., Aslanian, S., Lim, A.C., Gokemeijer, J., Storek, M.J., Lee, J., et al. (2010). Anti-tumor effect of CT-322 as an adnectin inhibitor of vascular endothelial growth factor receptor-2. mAbs 2, 199-208.
Mao, Y., and Schwarzbauer, J.E. (2005). Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix biology : journal of the International Society for Matrix Biology 24, 389-399.
Mustard, J.F., Packham, M.A., Kinlough-Rathbone, R.L., Perry, D.W., and Regoeczi, E. (1978). Fibrinogen and ADP-induced platelet aggregation. Blood 52, 453-466.
Naik, M.U., Mousa, S.A., Parkos, C.A., and Naik, U.P. (2003). Signaling through JAM-1 and alphavbeta3 is required for the angiogenic action of bFGF: dissociation of the JAM-1 and alphavbeta3 complex. Blood 102, 2108-2114.
Niu, G., and Chen, X. (2011). Why integrin as a primary target for imaging and therapy. Theranostics 1, 30-47.
Parker, M.H., Chen, Y., Danehy, F., Dufu, K., Ekstrom, J., Getmanova, E., Gokemeijer, J.,Xu, L., and Lipovsek, D. (2005). Antibody mimics based on human fibronectin type three domain engineered for thermostability and high-affinity binding to vascular endothelial growth factor receptor two. Protein engineering, design & selection : PEDS 18, 435-444.
Ramjaun, A.R., and Hodivala-Dilke, K. (2009). The role of cell adhesion pathways in angiogenesis. The international journal of biochemistry & cell biology 41, 521-530.
Richards, J., Miller, M., Abend, J., Koide, A., Koide, S., and Dewhurst, S. (2003). Engineered fibronectin type III domain with a RGDWXE sequence binds with enhanced affinity and specificity to human alphavbeta3 integrin. Journal of molecular biology 326, 1475-1488.
Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annual review of cell and developmental biology 12, 697-715.
Sharma, A., Askari, J.A., Humphries, M.J., Jones, E.Y., and Stuart, D.I. (1999). Crystal structure of a heparin- and integrin-binding segment of human fibronectin. The EMBO journal 18, 1468-1479.
Shimaoka, M., and Springer, T.A. (2003). Therapeutic antagonists and conformational regulation of integrin function. Nature reviews Drug discovery 2, 703-716.
Singh, P., Carraher, C., and Schwarzbauer, J.E. (2010). Assembly of fibronectin extracellular matrix. Annual review of cell and developmental biology 26, 397-419.
Springer, T.A., and Wang, J.H. (2004). The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Advances in protein chemistry 68, 29-63.
Takada, Y., Ye, X., and Simon, S. (2007). The integrins. Genome biology 8, 215.
Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F., and Hynes, R.O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271-282.
Tamkun, J.W., and Hynes, R.O. (1983). Plasma fibronectin is synthesized and secreted by hepatocytes. The Journal of biological chemistry 258, 4641-4647.
To, W.S., and Midwood, K.S. (2011). Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis & tissue repair 4, 21.
Wijelath, E.S., Rahman, S., Namekata, M., Murray, J., Nishimura, T., Mostafavi-Pour, Z., Patel, Y., Suda, Y., Humphries, M.J., and Sobel, M. (2006). Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circulation research 99, 853-860.
Xiao, T., Takagi, J., Coller, B.S., Wang, J.H., and Springer, T.A. (2004). Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics.
Nature 432, 59-67.
Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., and Arnaout, M.A. (2001). Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294, 339-345.
Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, M.A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151-155.