簡易檢索 / 詳目顯示

研究生: 孫延致
Sun, Yanjhih
論文名稱: DNA損傷耐受機制中PARP1的調控功能
The function of Poly (ADP-ribose) polymerase 1 in the DNA damage tolerance pathway
指導教授: 廖泓鈞
Liaw, Hungjiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 55
中文關鍵詞: DNA損傷耐受機制
外文關鍵詞: Poly (ADP-ribose) polymerase 1 (PARP1), DNA damage tolerance (DDT), Template switch (TS)
相關次數: 點閱:185下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DNA 損傷耐受機制(DNA damage tolerance, DDT)也稱之為複製後修飾機制(Post-replication repair, PRR),對於保持基因體的完整相當重要。 缺乏DDT可導致DNA複製叉停滯和雙股DNA斷裂(Double strand break, DSB)的數量增加,最終使基因體不穩定性。模板轉換(Template-switch, TS)是DDT其中一個分支,PCNA受E2泛素酶UBC13、MMS2和E3泛素連接酶HLTF、SHPRH產生賴氨酸63所連接的聚泛素化調節。然而TS的詳細機制仍不清楚。先前我們利用免疫共沉澱實驗鑑定出HLTF與PARP1有相互作用。在本次研究中,我們進一步確定HLTF不僅與PARP1相互作用也能與BARD1相互作用。HLTF利用HIRAN和DEXDc區域與PARP1行交互作用並利用HIRAN區域與BARD1行交互作用。當下調PARP1的表現量後,標定的新合成DNA明顯不能繞過MMS所產生的DNA障礙而變短,同時有較多標定的DNA卡損在復制叉中無法繼續複製,缺乏繞過DNA障礙的能力在利用CRISPR-Cas9系統所生產的完全缺失PARP1細胞株也得到相似結果,完全缺失PARP1造成大量姊妹染色體互換(sister chromatid exchanges SCE),表示其在複製叉中產生大量DSB。完全缺失PARP1在面臨順鉑或MMS時有非常顯著的藥物敏感性。最後我們發現當細胞中過度表現PARP1的DNA結合結構區域(PARP1-DBD)時,細胞複製叉會形成大量的SCE,此細胞增加DSB的現象和完全缺失PARP1細胞株相當類似,表示PARP1-DBD可影響內生性PARP1的正常功能。最終我們的結果證明PARP1可調控TS機制。當PARP1缺失時會導致TS機制受損,進而增加複製叉停滯以及DSB的數量。

    The DNA damage tolerance (DDT) pathway, also known as post-replication repair (PRR), plays an important role in the maintenance of genome integrity. Defects in the DDT pathway can cause increasing numbers of stalled DNA replication forks and DNA double strand breaks (DSB), and as a result, can cause genomic instability. One branch of DDT, known as template switching (TS) is regulated by the lysine 63-linked polyubiquitination of PCNA generated by the ubiquitin E2 enzymes UBC13 and MMS2, and the ubiquitin E3 ligases HLTF and SHPRH. However, the detailed mechanism by which this occurs remains unclear. Previously, using a coimmunoprecipitation assay, we found that HLTF interacts with PARP1. In this study, we further identified that HLTF not only interacts with PARP1, but also interacts with BARD1. We revealed that HLTF utilizes HIRAN and the DEXDc domain to interact with PARP1 and utilizes the HIRAN domain to interact with BARD1. Additionally, a DNA fiber assay indicated that the depletion of PARP1 reduces the replication track length in response to methyl methanesulfonate (MMS)-induced DNA lesions and simultaneously increases the number of stalled forks. Similar results were also shown in the PARP1 null mutant, which is generated by the CRISPR-Cas9 system. Significantly, the PARP1 null mutant exhibits elevated sister chromatid exchanges (SCEs), indicating that an increased number of DSB is generated in the mutant cells. The PARP1 null mutant is sensitive to DNA damaging agents such as MMS and cisplatin. Furthermore, overexpression of the DNA binding domain of PARP1 (PARP1-DBD) can significantly increases SCEs, a phenotype similar to the PARP1 null mutant, indicating that PARP1-DBD can interfere with the function of endogenous PARP1. Taken together, our results suggest that PARP1 is involved in the TS pathway. The depletion of PARP1 can result in defective TS, and as a result can cause an increasing number of stalled forks and DSBs.

    Abstract I 中文摘要 II 致謝 III Contents IV List of figures VI Abbreviation VII 1. Introduction - 1 - 1.1 DNA damage respond (DDR) - 1 - 1.2 Cell cycle checkpoint - 1 - 1.3 Mismatch repair (MMR) - 2 - 1.4 Base excision repair (BER) - 2 - 1.5 Nucleotide excision repair (NER) - 3 - 1.6 Repair of double strand breaks (DSBs) - 4 - 1.7 Poly (ADP-ribose) polymerase 1 (PARP1) - 5 - 1.8 DNA damage tolerance (DDT) - 7 - 1.9 Aims of the current study - 9 - 2. Materials and methods - 10 - 2.1 Cell culture - 10 - 2.2 Generation of shRNA knockdown and CRISPR knockout HONE6 cell lines. - 10 - 2.3 Genomic DNA extraction - 10 - 2.4 RNA extraction - 11 - 2.5 Western blot - 11 - 2.6 GST pulldown assay - 12 - 2.7 Cell survival assay - 13 - 2.8 Colony formation assay - 13 - 2.9 Sister chromatid exchange (SCE) - 13 - 2.10 DNA fiber assay - 14 - 2.11 Table 1 - 15 - 2.12 Table 2 - 15 - 3. Results - 16 - 3.1 HLTF interacts with PARP1 and BARD1. - 16 - 3.2 Depletion of HLTF, PARP1, BARD1 and UBC13 significantly reduces DNA replication track length and increases the number of stalled forks in response to MMS-induced DNA lesions. - 16 - 3.3 Deletion of PARP1 sensitizes HONE6 cells to MMS. - 17 - 3.4 The generation of gene knockout cell lines using the CRISPR-Cas9 system. - 18 - 3.5 The PARP1 null mutant HONE6 cells were sensitive to cisplatin and MMS. - 18 - 3.6 The PARP1 null mutant HONE6 showed elevated SCEs. - 19 - 3.7 PARP1 null mutant HONE6 cells exhibit reduced DNA replication track lengths and increased numbers of stalled forks in response to MMS-induced DNA lesions. - 19 - 3.8 Overexpression of DNA binding domain of PARP1 (PARP1-DBD) increases the frequency of SCEs. - 20 - 4. Discussion - 21 - 5. References - 24 -

    1 Sinha, R. P. & Hader, D. P. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1, 225-236 (2002).
    2 Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071-1078, doi:10.1038/nature08467 (2009).
    3 Broustas, C. G. & Lieberman, H. B. DNA damage response genes and the development of cancer metastasis. Radiat Res 181, 111-130, doi:10.1667/RR13515.1 (2014).
    4 Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9, 616-627, doi:10.1038/nrm2450 (2008).
    5 Swift, M., Reitnauer, P. J., Morrell, D. & Chase, C. L. Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 316, 1289-1294, doi:10.1056/NEJM198705213162101 (1987).
    6 Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749-1753 (1995).
    7 Jiricny, J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7, 335-346, doi:10.1038/nrm1907 (2006).
    8 David, S. S., O'Shea, V. L. & Kundu, S. Base-excision repair of oxidative DNA damage. Nature 447, 941-950, doi:10.1038/nature05978 (2007).
    9 Krokan, H. E. & Bjoras, M. Base excision repair. Cold Spring Harb Perspect Biol 5, a012583, doi:10.1101/cshperspect.a012583 (2013).
    10 Bork, P. et al. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J 11, 68-76 (1997).
    11 Dantzer, F. et al. Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry-Us 39, 7559-7569, doi:10.1021/bi0003442 (2000).
    12 Leppard, J. B., Dong, Z. W., Mackey, Z. B. & Tomkinson, A. E. Physical and functional interaction between DNA ligase III alpha and poly(ADP-ribose) polymerase 1 in DNA single-strand break repair. Mol Cell Biol 23, 5919-5927, doi:10.1128/Mcb.23.16.5919-5927.2003 (2003).
    13 Satoh, M. S. & Lindahl, T. Role of poly(ADP-ribose) formation in DNA repair. Nature 356, 356-358, doi:10.1038/356356a0 (1992).
    14 Sukhanova, M., Khodyreva, S. & Lavrik, O. Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase beta in long patch base excision repair. Mutat Res 685, 80-89, doi:10.1016/j.mrfmmm.2009.08.009 (2010).
    15 Sukhanova, M. V. et al. Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Res 33, 1222-1229, doi:10.1093/nar/gki266 (2005).
    16 Allinson, S. L., Dianova, I. I. & Dianov, G. L. Poly(ADP-ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing. Acta Biochim Pol 50, 169-179 (2003).
    17 Hooten, N. N., Kompaniez, K., Barnes, J., Lohani, A. & Evans, M. K. Poly(ADP-ribose) Polymerase 1 (PARP-1) Binds to 8-Oxoguanine-DNA Glycosylase (OGG1). J Biol Chem 286, 44679-44690, doi:10.1074/jbc.M111.255869 (2011).
    18 Hooten, N. N. et al. Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging. Aging-Us 4, 674-685 (2012).
    19 Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374, doi:10.1038/35077232 (2001).
    20 Scharer, O. D. Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol 5, a012609, doi:10.1101/cshperspect.a012609 (2013).
    21 Pleschke, J. M., Kleczkowska, H. E., Strohm, M. & Althaus, F. R. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 275, 40974-40980, doi:10.1074/jbc.M006520200 (2000).
    22 King, B. S., Cooper, K. L., Liu, K. J. & Hudson, L. G. Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair. J Biol Chem 287, 39824-39833, doi:10.1074/jbc.M112.393504 (2012).
    23 Wittschieben, B. O., Iwai, S. & Wood, R. D. DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J Biol Chem 280, 39982-39989, doi:10.1074/jbc.M507854200 (2005).
    24 Purohit, N. K., Robu, M., Shah, R. G., Geacintov, N. E. & Shah, G. M. Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro. Sci Rep 6, 19020, doi:10.1038/srep19020 (2016).
    25 Fitch, M. E., Nakajima, S., Yasui, A. & Ford, J. M. In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem 278, 46906-46910, doi:10.1074/jbc.M307254200 (2003).
    26 Robu, M. et al. Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair. Proc Natl Acad Sci U S A 110, 1658-1663, doi:10.1073/pnas.1209507110 (2013).
    27 Pines, A. et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol 199, 235-249, doi:10.1083/jcb.201112132 (2012).
    28 Robu, M. et al. Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair. Proc Natl Acad Sci U S A 114, E6847-E6856, doi:10.1073/pnas.1706981114 (2017).
    29 Lieber, M. R. The mechanism of human nonhomologous DNA end joining. J Biol Chem 283, 1-5, doi:10.1074/jbc.R700039200 (2008).
    30 San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77, 229-257, doi:10.1146/annurev.biochem.77.061306.125255 (2008).
    31 Davis, A. J. & Chen, D. J. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2, 130-143, doi:10.3978/j.issn.2218-676X.2013.04.02 (2013).
    32 Langelier, M. F., Planck, J. L., Roy, S. & Pascal, J. M. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. J Biol Chem 286, 10690-10701, doi:10.1074/jbc.M110.202507 (2011).
    33 Langelier, M. F., Planck, J. L., Roy, S. & Pascal, J. M. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336, 728-732, doi:10.1126/science.1216338 (2012).
    34 Ruscetti, T. et al. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem 273, 14461-14467 (1998).
    35 Spagnolo, L., Barbeau, J., Curtin, N. J., Morris, E. P. & Pearl, L. H. Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res 40, 4168-4177, doi:10.1093/nar/gkr1231 (2012).
    36 Sigurdsson, S. et al. Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev 15, 3308-3318, doi:10.1101/gad.935501 (2001).
    37 Sung, P. & Robberson, D. L. DNA Strand Exchange Mediated by a Rad51-Ssdna Nucleoprotein Filament with Polarity Opposite to That of Reca. Cell 82, 453-461, doi:Doi 10.1016/0092-8674(95)90434-4 (1995).
    38 D'Amours, D., Desnoyers, S., D'Silva, I. & Poirier, G. G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342 ( Pt 2), 249-268 (1999).
    39 Nishizuka, Y., Ueda, K., Nakazawa, K. & Hayaishi, O. Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J Biol Chem 242, 3164-3171 (1967).
    40 Kurosaki, T. et al. Primary Structure of Human Poly(Adp-Ribose) Synthetase as Deduced from Cdna Sequence. J Biol Chem 262, 15990-15997 (1987).
    41 Hottiger, M. O., Hassa, P. O., Luscher, B., Schuler, H. & Koch-Nolte, F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35, 208-219, doi:10.1016/j.tibs.2009.12.003 (2010).
    42 Szanto, M. et al. Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol Life Sci 69, 4079-4092, doi:10.1007/s00018-012-1003-8 (2012).
    43 Singh, N., Poirier, G. & Cerutti, P. Tumor promoter phorbol-12-myristate-13-acetate induces poly(ADP)-ribosylation in fibroblasts. EMBO J 4, 1491-1494 (1985).
    44 Grube, K. & Burkle, A. Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proc Natl Acad Sci U S A 89, 11759-11763 (1992).
    45 Schraufstatter, I. U., Hinshaw, D. B., Hyslop, P. A., Spragg, R. G. & Cochrane, C. G. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest 77, 1312-1320, doi:10.1172/JCI112436 (1986).
    46 Haenni, S. S. et al. Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation. Int J Biochem Cell Biol 40, 2274-2283, doi:10.1016/j.biocel.2008.03.008 (2008).
    47 Mendoza-Alvarez, H. & Alvarez-Gonzalez, R. Biochemical characterization of mono(ADP-ribosyl)ated poly(ADP-ribose) polymerase. Biochemistry-Us 38, 3948-3953, doi:10.1021/bi982148p (1999).
    48 Benjamin, R. C. & Gill, D. M. Poly(ADP-ribose) synthesis in vitro programmed by damaged DNA. A comparison of DNA molecules containing different types of strand breaks. J Biol Chem 255, 10502-10508 (1980).
    49 Gradwohl, G. et al. The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci U S A 87, 2990-2994 (1990).
    50 Molinete, M. et al. Overproduction of the poly(ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. EMBO J 12, 2109-2117 (1993).
    51 Kupper, J. H. et al. trans-dominant inhibition of poly(ADP-ribosyl)ation sensitizes cells against gamma-irradiation and N-methyl-N'-nitro-N-nitrosoguanidine but does not limit DNA replication of a polyomavirus replicon. Mol Cell Biol 15, 3154-3163 (1995).
    52 Ferro, A. M. & Oppenheimer, N. J. Structure of a poly (adenosine diphosphoribose) monomer: 2'-(5"-hosphoribosyl)-5'-adenosine monophosphate. Proc Natl Acad Sci U S A 75, 809-813 (1978).
    53 Kim, M. Y., Mauro, S., Gevry, N., Lis, J. T. & Kraus, W. L. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119, 803-814, doi:10.1016/j.cell.2004.11.002 (2004).
    54 Tulin, A. & Spradling, A. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299, 560-562, doi:10.1126/science.1078764 (2003).
    55 Hoch, N. C. et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541, 87-91, doi:10.1038/nature20790 (2017).
    56 Li, Z., Liu, J. Y. & Zhang, J. T. 14-3-3sigma, the double-edged sword of human cancers. Am J Transl Res 1, 326-340 (2009).
    57 Chen, Y. et al. 14-3-3sigma Contributes to Radioresistance By Regulating DNA Repair and Cell Cycle via PARP1 and CHK2. Mol Cancer Res 15, 418-428, doi:10.1158/1541-7786.MCR-16-0366 (2017).
    58 Wang, T., Simbulan-Rosenthal, C. M., Smulson, M. E., Chock, P. B. & Yang, D. C. Polyubiquitylation of PARP-1 through ubiquitin K48 is modulated by activated DNA, NAD+, and dipeptides. J Cell Biochem 104, 318-328, doi:10.1002/jcb.21624 (2008).
    59 Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E. & Poirier, G. G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53, 3976-3985 (1993).
    60 Virag, L. & Szabo, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54, 375-429 (2002).
    61 Miyazaki, T. et al. The 3'-5' DNA exonuclease TREX1 directly interacts with poly(ADP-ribose) polymerase-1 (PARP1) during the DNA damage response. J Biol Chem 289, 32548-32558, doi:10.1074/jbc.M114.547331 (2014).
    62 Petrilli, V. et al. Noncleavable poly(ADP-ribose) polymerase-1 regulates the inflammation response in mice. J Clin Invest 114, 1072-1081, doi:10.1172/JCI21854 (2004).
    63 Herceg, Z. & Wang, Z. Q. Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol Cell Biol 19, 5124-5133 (1999).
    64 Ronson, G. E. et al. PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation. Nat Commun 9, 746, doi:10.1038/s41467-018-03159-2 (2018).
    65 Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913-917, doi:10.1038/nature03443 (2005).
    66 Knittel, G. et al. Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia. Nat Commun 8, 153, doi:10.1038/s41467-017-00210-6 (2017).
    67 Asim, M. et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat Commun 8, 374, doi:10.1038/s41467-017-00393-y (2017).
    68 Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917-921, doi:10.1038/nature03445 (2005).
    69 Ulrich, H. D. The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO. Chembiochem 6, 1735-1743, doi:10.1002/cbic.200500139 (2005).
    70 Lehmann, A. R. et al. Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst) 6, 891-899, doi:10.1016/j.dnarep.2007.02.003 (2007).
    71 Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821-1824, doi:10.1126/science.1120615 (2005).
    72 Guo, C. et al. Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol Cell Biol 26, 8892-8900, doi:10.1128/MCB.01118-06 (2006).
    73 Sale, J. E. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb Perspect Biol 5, a012708, doi:10.1101/cshperspect.a012708 (2013).
    74 McCulloch, S. D. & Kunkel, T. A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18, 148-161, doi:10.1038/cr.2008.4 (2008).
    75 Cleaver, J. E. Xeroderma pigmentosum: variants with normal DNA repair and normal sensitivity to ultraviolet light. J Invest Dermatol 58, 124-128 (1972).
    76 Sun, L. & Chen, Z. J. The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16, 119-126, doi:10.1016/j.ceb.2004.02.005 (2004).
    77 Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576-1583 (1989).
    78 Minca, E. C. & Kowalski, D. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol Cell 38, 649-661, doi:10.1016/j.molcel.2010.03.020 (2010).
    79 Godin, S. et al. The Shu complex interacts with Rad51 through the Rad51 paralogues Rad55-Rad57 to mediate error-free recombination. Nucleic Acids Res 41, 4525-4534, doi:10.1093/nar/gkt138 (2013).
    80 Xu, X. et al. The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue. PLoS One 8, e81371, doi:10.1371/journal.pone.0081371 (2013).
    81 Sasanuma, H. et al. A new protein complex promoting the assembly of Rad51 filaments. Nat Commun 4, 1676, doi:10.1038/ncomms2678 (2013).
    82 Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141, doi:10.1038/nature00991 (2002).
    83 Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428-433, doi:10.1038/nature03665 (2005).
    84 Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188-191, doi:10.1038/nature01965 (2003).
    85 Bizard, A. H. & Hickson, I. D. The dissolution of double Holliday junctions. Cold Spring Harb Perspect Biol 6, a016477, doi:10.1101/cshperspect.a016477 (2014).
    86 Carotenuto, W. & Liberi, G. Mitotic inter-homologue junctions accumulate at damaged DNA replication forks in recQ mutants. DNA Repair (Amst) 9, 661-669, doi:10.1016/j.dnarep.2010.02.017 (2010).
    87 Giannattasio, M. et al. Visualization of recombination-mediated damage bypass by template switching. Nat Struct Mol Biol 21, 884-892, doi:10.1038/nsmb.2888 (2014).
    88 Achar, Y. J. et al. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling. Nucleic Acids Res 43, 10277-10291, doi:10.1093/nar/gkv896 (2015).
    89 Motegi, A. et al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A 105, 12411-12416, doi:10.1073/pnas.0805685105 (2008).
    90 JiaLin, S. The HLTF-PARP1 interaction mediates homologous recombination to bypass DNA damage Master thesis, National cheng kung university, (2015).
    91 Muhammad, N. & Guo, Z. Metal-based anticancer chemotherapeutic agents. Current opinion in chemical biology 19, 144-153, doi:10.1016/j.cbpa.2014.02.003 (2014).
    92 Gottesman, M. M. Mechanisms of cancer drug resistance. Annual review of medicine 53, 615-627, doi:10.1146/annurev.med.53.082901.103929 (2002).
    93 Su, W. P. et al. Chronic treatment with cisplatin induces replication-dependent sister chromatid recombination to confer cisplatin-resistant phenotype in nasopharyngeal carcinoma. Oncotarget 5, 6323-6337, doi:10.18632/oncotarget.2210 (2014).
    94 Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281-2308, doi:10.1038/nprot.2013.143 (2013).
    95 Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26, 808-816, doi:10.1038/nbt1410 (2008).
    96 Su, W. P. et al. Chronic treatment with cisplatin induces chemoresistance through the TIP60-mediated Fanconi anemia and homologous recombination repair pathways. Sci Rep 7, 3879, doi:10.1038/s41598-017-04223-5 (2017).
    97 Wilhelm, T. et al. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress. PLoS Genet 12, e1006007, doi:10.1371/journal.pgen.1006007 (2016).
    98 Burkovics, P., Sebesta, M., Balogh, D., Haracska, L. & Krejci, L. Strand invasion by HLTF as a mechanism for template switch in fork rescue. Nucleic Acids Res 42, 1711-1720, doi:10.1093/nar/gkt1040 (2014).
    99 Yen-Ju, C. The function of PARP1 self-PARylation in the DNA damage tolerance pathway Master thesis, National cheng kung university (2017).
    100 Budzowska, M. & Kanaar, R. Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 53, 17-31, doi:10.1007/s12013-008-9039-y (2009).
    101 Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8, 193-204, doi:10.1038/nrc2342 (2008).
    102 Huen, M. S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131, 901-914, doi:10.1016/j.cell.2007.09.041 (2007).
    103 Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136, 435-446, doi:10.1016/j.cell.2008.12.041 (2009).
    104 Wang, B. & Elledge, S. J. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci U S A 104, 20759-20763, doi:10.1073/pnas.0710061104 (2007).
    105 Masson, M. et al. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18, 3563-3571, doi:Doi 10.1128/Mcb.18.6.3563 (1998).
    106 El-Khamisy, S. F., Masutani, M., Suzuki, H. & Caldecott, K. W. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Research 31, 5526-5533, doi:10.1093/nar/gkg761 (2003).
    107 Brem, R. & Hall, J. XRCC1 is required for DNA single-strand break repair in human cells. Nucleic Acids Research 33, 2512-2520, doi:10.1093/nar/gki543 (2005).
    108 Hoch, N. C. et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541, 87-+, doi:10.1038/nature20790 (2017).

    下載圖示 校內:立即公開
    校外:2020-07-01公開
    QR CODE