| 研究生: |
陳瑩禎 Chen, Ying-Jhen |
|---|---|
| 論文名稱: |
利用亞硝酸鹽/硝酸鹽型厭氧甲烷氧化菌進行脫氮除碳之研究 The Study of Nitrite/nitrate Dependent Anaerobic Methane Oxidation (N-DAMO) for Nitrogen and Carbon Removal |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 生物除氮 、脫硝反應 、厭氧甲烷氧化 、N-DAMO 、厭氧流體化薄膜生物反應槽 |
| 外文關鍵詞: | Biological nitrogen removal, denitrification, anaerobic methane oxidation, N-DAMO, anaerobic fluidized membrane bioreactor (AFMBR) |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來發現亞硝酸鹽/硝酸鹽型厭氧甲烷氧化菌,以甲烷作為脫硝反應的碳源及電子供給者,可同時除氮及減少溫室氣體甲烷的排放,因此本研究欲富集化N-DAMOs,針對不同植種污泥來源和馴養方式進行實驗,以釐清其表現行為及提供工程實務應用上之策略。
在批次式馴養發現高初始VSS濃度操作,有額外COD釋出問題,後續以半基質更換方式調降系統中微生物濃度,確實可改善甲烷利用狀況,其中又以MBR污泥為植種源,甲烷利用較為顯著,因此規劃另一組參數是MBR污泥當植種源並操作在低初始VSS濃度,發現N-DAMOs在系統中是優勢菌,且可得知初始VSS濃度是影響能否成功富集化N-DAMOs重要因素之一。
在厭氧流體化薄膜生物反應器實驗,亞硝/硝酸轉換率達82-100%,隨著亞硝/硝酸鹽氮負荷率提升,平均甲烷消耗速率及平均氮氣生成速率皆隨之增加。此外,連續流操作相較於批次式馴養,可獲得較高的亞硝/硝酸鹽氮轉換率達35.1 mg-N L-1 d-1。以反應槽污泥進行降解速率批次,初始亞硝/硝酸濃度為10-14 mg-N/L時,測得最高的比基質利用速率,然而若亞硝/硝酸同時存在,比基質利用率皆有下降之情形。在活性試驗,系統中有甲烷所獲得之亞硝酸鹽氮/硝酸鹽氮轉換速率皆相較於系統中無甲烷高,由此得知本研究兩個AFMBRs系統內皆具有N-DAMO菌群的活性。
In Fed-Batch culture, both of UASB and MBR sludge were used for inoculum, the NO2-/NO3- conversion would not be coupled to CH4 consumption under high VSS operation condition. After decreasing VSS by the dilution during nutrients exchange, CH4 decreased significantly with MBR sludge. It indicated that MBR sludge had the potential to enrich N-DAMOs. Moreover, VSS was one of the important factors to affect whether N-DAMOs’ enrichment was successful or not.
In AFMBR system, NO2-/NO3- conversion could achieve 82-100%. With the increase of NO2-/NO3- loading rate, average CH4 consumption rate and N2 production rate increased as well. Even though HRT decreased from 1.5 d to 1 d and 0.8 d, most of the NO2-/NO3- would be converted completely. Additionally, higher NO2-/NO3- loading rate could be obtained in AFMBR system comparing to Fed-Batch culture. Degradation batch experiments were performed by using biomass from two AFMBRs. The highest specific NO2-/NO3- conversion rate, specific CH4 consumption rate and specific N2 production rate achieved under initial NO2-/NO3- concentration was 10-14 mg-N/L. However, when adding NO2- and NO3- at the same time, all of the specific NO2-/NO3- conversion rate, specific CH4 consumption rate and specific N2 production rate decreased.
In batch test on N-DAMOs’ activity, NO2-/NO3- conversion rate obtained in experimental group (with methane in the system) was higher than in control group (without methane in the system). It indicated that N-DAMOs’ activity contributed in two AFMBRs. Also, this study was the first research using AFMBR to enrich N-DAMOs.
Alvarez, L., Bricio, C., Blesa, A., Hidalgo, A., Berenguer, J. Transferable denitrification capability of Thermus thermophilus. Applied and environmental microbiology, 80(1), 19-28. 2014.
Bédard, C., Knowles, R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiological reviews, 53(1), 68-84. 1989.
Baalsrud, K., Baalsrud, K.S. Studies on Thiobacillus denitrificans. Archiv für Mikrobiologie, 20(1), 34-62. 1954.
Bandara, W.M., Kindaichi, T., Satoh, H., Sasakawa, M., Nakahara, Y., Takahashi, M., Okabe, S. Anaerobic treatment of municipal wastewater at ambient temperature: analysis of archaeal community structure and recovery of dissolved methane. Water research, 46(17), 5756-5764. 2012.
Barnard, J.L. Biological nutrient removal without the addition of chemicals. Water Research, 9(5-6), 485-490. 1975.
Bazylinski, D.A., Palome, E., Blakemore, N.A., Blakemore, R.P. Denitrification by Chromobacterium violaceum. Applied and environmental microbiology, 52(4), 696-699. 1986.
Beal, E.J., House, C.H., Orphan, V.J. Manganese-and iron-dependent marine methane oxidation. Science, 325(5937), 184-187. 2009.
Bourne, D.G., McDonald, I.R., Murrell, J.C. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Applied and environmental microbiology, 67(9), 3802-3809. 2001.
Brandes, J.A., Devol, A.H., Deutsch, C. New developments in the marine nitrogen cycle. Chemical reviews, 107(2), 577-589. 2007.
Buchheister, F., Schuch, R., Winter, J. Biological Nitrogen Removal from Wastewater of the Metal‐Working Industry. Chemical engineering & technology, 23(11), 967-971. 2000.
Cai, C., Hu, S., Guo, J., Shi, Y., Xie, G.-J., Yuan, Z. Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate. Water research, 87, 211-217. 2015.
Chang, C.C., Tseng, S.K., Huang, H.K. Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment. Bioresource technology, 69(1), 53-58. 1999.
Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., Kroiss, H. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water research, 39(19), 4797-4807. 2005.
Cline, J.D., Richards, F.A. Oxygen deficient conditions and nitrate reduction in the eastern tropical North Pacific Ocean. Limnology and Oceanography, 17(6), 885-900. 1972.
Codispoti, L.A., Yoshinari, T., Devol, A.H. Suboxic respiration in the oceanic water column. Respiration in aquatic ecosystems, 225-247. 2005.
Crowe, S., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M., Kessler, J., Reeburgh, W., Roberts, J. The methane cycle in ferruginous Lake Matano. Geobiology, 9(1), 61-78. 2011.
Cui, M., Ma, A., Qi, H., Zhuang, X., Zhuang, G. Anaerobic oxidation of methane: an “active” microbial process. MicrobiologyOpen, 4(1), 1-11. 2015.
Dapena-Mora, A. Wastewater treatment by anammox process: A short-circuit in the natural nitrogen cycle, Universidade de Santiago de Compostela. 2007.
Davies, T. Isolation of bacteria capable of utilizing methane as a hydrogen donor in the process of denitrification. Water Research, 7(4), 575-579. 1973.
De Clippeleir, H., Yan, X., Verstraete, W., Vlaeminck, S.E. OLAND is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence times. Applied microbiology and biotechnology, 90(4), 1537-1545. 2011.
De Lucas, A., Rodriguez, L., Villasenor, J., Fernández, F. Denitrification potential of industrial wastewaters. Water Research, 39(15), 3715-3726. 2005.
De Mes, T., Stams, A., Reith, J., Zeeman, G. Methane production by anaerobic digestion of wastewater and solid wastes. Bio-methane & Bio-hydrogen, 58-102. 2003.
DeLong, E.F. Microbiology: resolving a methane mystery. Nature, 407(6804), 577. 2000.
Ding, Z.-W., Ding, J., Fu, L., Zhang, F., Zeng, R.J. Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria. Applied microbiology and biotechnology, 98(24), 10211-10221. 2014.
Dosta, J., Fernandez, I., Vazquez-Padin, J., Mosquera-Corral, A., Campos, J., Mata-Alvarez,J., Mendez, R. Short-and long-term effects of temperature on the Anammox process. Journal of hazardous materials, 154(1-3), 688-693. 2008.
Dosta Parras, J. Operation and Model Description of Advanced Biological Nitrogen Removal Treatments of Highly Ammonium Loaded Wastewaters. Universitat de Barcelona. 2007.
Dunfield, P.F., Yuryev, A., Senin, P., Smirnova, A.V., Stott, M.B., Hou, S., Ly, B., Saw, J.H., Zhou, Z., Ren, Y. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 450(7171), 879. 2007.
Eş, I., Vieira, J.D.G., Amaral, A.C. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Applied microbiology and biotechnology, 99(5), 2065-2082. 2015.
Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., De Beer, D. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), 543. 2010.
Ettwig, K.F., Shima, S., De Pas‐Schoonen, V., Katinka, T., Kahnt, J., Medema, M.H., Op Den Camp, H.J., Jetten, M.S., Strous, M. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environmental microbiology, 10(11), 3164-3173. 2008.
Ettwig, K.F., Van Alen, T., van de Pas-Schoonen, K.T., Jetten, M.S., Strous, M. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Applied and environmental microbiology, 75(11), 3656-3662. 2009.
Fu, L., Ding, J., Lu, Y.-Z., Ding, Z.-W., Bai, Y.-N., Zeng, R.J. Hollow fiber membrane bioreactor affects microbial community and morphology of the DAMO and Anammox co-culture system. Bioresource technology, 232, 247-253. 2017a.
Fu, L., Ding, J., Lu, Y.-Z., Ding, Z.-W., Zeng, R.J. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process. Applied microbiology and biotechnology, 101(9), 3895-3906. 2017b.
Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(5878), 889-892. 2008.
Ghafari, S., Hasan, M., Aroua, M.K. Bio-electrochemical removal of nitrate from water andwastewater—a review. Bioresource Technology, 99(10), 3965-3974. 2008.
Gujer, W., Jenkins, D.A. The Contact Stabilization Process: Oxygen and Nitrogen Mass Balances. Sanitary Engineering Research Laboratory, College of Engineering and School of Public Health, University of California. 1974.
Hanson, R.S., Hanson, T.E. Methanotrophic bacteria. Microbiological reviews, 60(2), 439-471. 1996.
Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500(7464), 567. 2013a.
Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500(7464), 567-570. 2013b.
Harremoës, P., Henze, M. Denitrifikation med methan. Vand, 1. 1971.
Hatamoto, M., Kimura, M., Sato, T., Koizumi, M., Takahashi, M., Kawakami, S., Araki, N., Yamaguchi, T. Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures. PloS one, 9(12), e115823. 2014.
Hauck, S., Benz, M., Brune, A., Schink, B. Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). FEMS Microbiology Ecology, 37(2), 127-134. 2001.
He, Z., Cai, C., Shen, L., Lou, L., Zheng, P., Xu, X., Hu, B. Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria. Applied microbiology and biotechnology, 99(2), 939-946. 2015a.
He, Z., Geng, S., Cai, C., Liu, S., Liu, Y., Pan, Y., Lou, L., Zheng, P., Xu, X., Hu, B. Anaerobic oxidation of methane coupled to nitrite reduction by halophilic marine NC10 bacteria. Applied and environmental microbiology, 81(16), 5538-5545. 2015b.
He, Z., Geng, S., Shen, L., Lou, L., Zheng, P., Xu, X., Hu, B. The short-and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. water research, 68, 554-562. 2015c.
Hellinga, C., Schellen, A., Mulder, J.W., van Loosdrecht, M.v., Heijnen, J. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water science and technology, 37(9), 135-142. 1998.
Henze, M., Harremoes, P., la Cour Jansen, J., Arvin, E. Wastewater treatment: biologicaland chemical processes. Springer Science & Business Media. 2001.
Hill, A.R., Devito, K.J., Campagnolo, S., Sanmugadas, K. Subsurface denitrification in a forest riparianzone: interactions between hydrology and supplies ofnitrate and organic carbon. Biogeochemistry, 51(2), 193-223. 2000.
Hinrichs, K.-U., Boetius, A. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. in: Ocean margin systems, Springer, pp. 457-477. 2002.
Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F. Methane-consuming archaebacteria in marine sediments. Nature, 398(6730), 802-805. 1999.
Hoehler, T.M., Alperin, M.J., Albert, D.B., Martens, C.S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen‐sulfate reducer consortium. Global Biogeochemical Cycles, 8(4), 451-463. 1994.
Holmes, A.J., Costello, A., Lidstrom, M.E., Murrell, J.C. Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS microbiology letters, 132(3), 203-208. 1995.
Hoover, S.R., Porges, N. Assimilation of dairy wastes by activated sludge: II. The equation of synthesis and rate of oxygen utilization. Sewage and Industrial Wastes, 306-312. 1952.
Hou, Y. Study of the Anaerobic Methane Oxidation Coupled to Nitrate Denitrification, University of Waterloo. 2014.
Howarth, R.W., Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography, 51(1part2), 364-376. 2006.
Hu, B.-l., Shen, L.-d., Lian, X., Zhu, Q., Liu, S., Huang, Q., He, Z.-f., Geng, S., Cheng, D.-q., Lou, L.-p. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proceedings of the National Academy of Sciences, 111(12), 4495-4500. 2014a.
Hu, B., He, Z., Geng, S., Cai, C., Lou, L., Zheng, P., Xu, X. Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration. Applied microbiology and biotechnology, 98(18), 7983-7991. 2014b.
Hu, S., Zeng, R.J., Burow, L.C., Lant, P., Keller, J., Yuan, Z. Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environmental Microbiology Reports,1(5), 377-384. 2009.
Hu, S., Zeng, R.J., Haroon, M.F., Keller, J., Lant, P.A., Tyson, G.W., Yuan, Z. A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments. Scientific reports, 5, 8706. 2015.
Hutton, W.E., Zobell, C.E. Production of nitrite from ammonia by methane oxidizing bacteria. Journal of bacteriology, 65(2), 216. 1953.
Joye, S.B., Boetius, A., Orcutt, B.N., Montoya, J.P., Schulz, H.N., Erickson, M.J., Lugo, S.K. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chemical Geology, 205(3-4), 219-238. 2004.
Kampman, C., Hendrickx, T.L., Luesken, F.A., van Alen, T.A., den Camp, H.J.O., Jetten, M.S., Zeeman, G., Buisman, C.J., Temmink, H. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment. Journal of hazardous materials, 227, 164-171. 2012.
Kampman, C., Temmink, H., Hendrickx, T.L., Zeeman, G., Buisman, C.J. Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20 C. Journal of hazardous materials, 274, 428-435. 2014.
Kartal, B., Kuenen, J.v., Van Loosdrecht, M. Sewage treatment with anammox. Science, 328(5979), 702-703. 2010.
Keith, S., MacFarlane, G., Herbert, R. Dissimilatory nitrate reduction by a strain ofClostridium butyricum isolated from estuarine sediments. Archives of Microbiology, 132(1), 62-66. 1982.
Khin, T., Annachhatre, A.P. Novel microbial nitrogen removal processes. Biotechnology advances, 22(7), 519-532. 2004.
Kits, K.D., Klotz, M.G., Stein, L.Y. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environmental microbiology, 17(9), 3219-3232. 2015.
Kleerebezem, R., Mendezà, R. Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Water Science and Technology, 45(10), 349-356. 2002.
Knittel, K., Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annual review of microbiology, 63, 311-334. 2009.Knowles, R. Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecological Engineering, 24(5), 441-446. 2005.
Kool, D.M., Zhu, B., Rijpstra, W.I.C., Jetten, M.S., Ettwig, K.F., Damsté, J.S.S. Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer “Candidatus Methylomirabilis oxyfera”. Applied and environmental microbiology, 78(24), 8650-8656. 2012.
Kuenen, J.G. Anammox bacteria: from discovery to application. Nature Reviews Microbiology, 6(4), 320. 2008.
Kuypers, M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jørgensen, B.B., Kuenen, J.G., Damsté, J.S.S., Strous, M., Jetten, M.S. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422(6932), 608. 2003.
Leak, D.J., Dalton, H. Growth yields of methanotrophs. Applied microbiology and biotechnology, 23(6), 470-476. 1986.
Lieberman, R.L., Rosenzweig, A.C. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Critical reviews in biochemistry and molecular biology, 39(3), 147-164. 2004.
Ludzack, F., Ettinger, M. Controlling operation to minimize activated sludge effluent nitrogen. Journal (Water Pollution Control Federation), 920-931. 1962.
Luesken, F.A., Sánchez, J., Van Alen, T.A., Sanabria, J., den Camp, H.J.O., Jetten, M.S., Kartal, B. Simultaneous nitrite-dependent anaerobic methane and ammonium oxidation processes. Applied and environmental microbiology, 77(19), 6802-6807. 2011a.
Luesken, F.A., van Alen, T.A., van der Biezen, E., Frijters, C., Toonen, G., Kampman, C., Hendrickx, T.L., Zeeman, G., Temmink, H., Strous, M. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Applied microbiology and biotechnology, 92(4), 845. 2011b.
Münch, E.V., Lant, P., Keller, J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Research, 30(2), 277-284. 1996.
Madigan, M., Martinko, J., Brock, J. Biology of Microorganisms. Prentice-Hall. Upper Saddle River, NJ, 986. 1997.
Majumdar, D. The blue baby syndrome. Resonance, 8(10), 20-30. 2003.
Martens, C.S., Berner, R.A. Methane production in the interstitial waters of sulfate-depletedmarine sediments. Science, 185(4157), 1167-1169. 1974.
Martin, K.J., Nerenberg, R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresource technology, 122, 83-94. 2012.
Matějů, V., Čižinská, S., Krejčí, J., Janoch, T. Biological water denitrification—a review. Enzyme and microbial technology, 14(3), 170-183. 1992.
McCarty, P.L. 1969. Biological denitrification of wastewaters by addition of organic materials. Proc. 24^< th> Ind. Waste Conf., Purdue Univ., 1969.
Milucka, J., Ferdelman, T.G., Polerecky, L., Franzke, D., Wegener, G., Schmid, M., Lieberwirth, I., Wagner, M., Widdel, F., Kuypers, M.M. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 491(7425), 541. 2012.
Modin, O., Fukushi, K., Nakajima, F., Yamamoto, K. Performance of a membrane biofilm reactor for denitrification with methane. Bioresource technology, 99(17), 8054-8060. 2008.
Modin, O., Fukushi, K., Yamamoto, K. Denitrification with methane as external carbon source. Water research, 41(12), 2726-2738. 2007.
Napier, J., Bustamante, R.B. In‐situ biodenitrification of the S‐3 ponds. Environmental Progress & Sustainable Energy, 7(1), 13-16. 1988.
Nauhaus, K., Boetius, A., Krüger, M., Widdel, F. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environmental microbiology, 4(5), 296-305. 2002.
Nerenberg, R. 2005. Membrane biofilm reactors for water and wastewater treatment. A Seminar on Advances in Water and Wastewater Treatment. Borchardt Conference, Ann Arbor, MI. Citeseer.
Niewöhner, C., Hensen, C., Kasten, S., Zabel, M., Schulz, H. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica et Cosmochimica Acta, 62(3), 455-464. 1998.
Orhon, D., Artan, N. Modelling of the activated sludge systems, technomic, USA. 1994.
Orphan, V.J., House, C.H., Hinrichs, K.-U., McKeegan, K.D., DeLong, E.F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. science, 293(5529), 484-487. 2001.
Otaki, M., Yano, K., Ohgaki, S. Virus removal in a membrane separation process. WaterScience and Technology, 37(10), 107-116. 1998.
Park, J.Y., Yoo, Y.J. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose. Applied microbiology and biotechnology, 82(3), 415-429. 2009.
Parravicini, V., Svardal, K., Krampe, J. Greenhouse gas emissions from wastewater treatment plants. Energy Procedia, 97, 246-253. 2016.
Pol, A., Heijmans, K., Harhangi, H.R., Tedesco, D., Jetten, M.S., Den Camp, H.J.O. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature, 450(7171), 874. 2007.
Raghoebarsing, A.A., Pol, A., Van de Pas-Schoonen, K.T., Smolders, A.J., Ettwig, K.F., Rijpstra, W.C., Schouten, S., Sinninghe Damsté, J.S., Camp, H., Jetten, M.S. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 918-921. 2006.
Ragsdale, S.W. Enzymology of the acetyl-CoA pathway of CO2 fixation. Critical reviews in biochemistry and molecular biology, 26(3-4), 261-300. 1991.
Rasigraf, O., Kool, D.M., Jetten, M.S., Damsté, J.S.S., Ettwig, K.F. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Applied and environmental microbiology, 80(8), 2451-2460. 2014.
Reeburgh, W.S. Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters, 28(3), 337-344. 1976.
Rittmann, B.E., Huck, P.M., Bouwer, E.J. Biological treatment of public water supplies. Critical Reviews in Environmental Science and Technology, 19(2), 119-184. 1989.
Rittmann, B.E., McCarty, P.L. Environmental biotechnology: principles and applications. Tata McGraw-Hill Education. 2012.
Sattayatewa, C., Pagilla, K., Pitt, P., Selock, K., Bruton, T. Organic nitrogen transformations in a 4-stage Bardenpho nitrogen removal plant and bioavailability/biodegradability of effluent DON. Water research, 43(18), 4507-4516. 2009.
Seada, M.A., Ottow, J. Effect of increasing oxygen concentration on total denitrification and nitrous oxide release from soil by different bacteria. Biology and Fertility of soils, 1(1), 31-38. 1985.
Shen, L.-d., He, Z.-f., Wu, H.-s., Gao, Z.-q. Nitrite-dependent anaerobic methane-oxidisingbacteria: unique microorganisms with special properties. Current microbiology, 70(4), 562-570. 2015a.
Shen, L.-D., He, Z.-F., Zhu, Q., Chen, D.-Q., Lou, L.-P., Xu, X.-Y., Zheng, P., Hu, B.-L. Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process. Frontiers in microbiology, 3. 2012.
Shen, L.-d., Wu, H.-s., Gao, Z.-q. Distribution and environmental significance of nitrite-dependent anaerobic methane-oxidising bacteria in natural ecosystems. Applied microbiology and biotechnology, 99(1), 133-142. 2015b.
Shen, L.-d., Wu, H.-s., Liu, X., Li, J. Cooccurrence and potential role of nitrite-and nitrate-dependent methanotrophs in freshwater marsh sediments. Water research, 123, 162-172. 2017.
Shi, Y., Hu, S., Lou, J., Lu, P., Keller, J., Yuan, Z. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environmental science & technology, 47(20), 11577-11583. 2013.
Singh, S. Performance of Denitrifying Methanotrophic Bacteria of the NC10 Phylum in Sequencing Batch Reactor. 交通大學環境工程系所學位論文, 1-81. 2016.
Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S.G., Eckert, W. Geochemical evidence for iron‐mediated anaerobic oxidation of methane. Limnology and Oceanography, 56(4), 1536-1544. 2011.
Smemo, K., Yavitt, J. Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences, 8(3), 779-793. 2011.
Solomon, S. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge university press. 2007.
Stocker, T. Climate Change 2013: The physical science basis: Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. 2014.
Stoecker, K., Bendinger, B., Schöning, B., Nielsen, P.H., Nielsen, J.L., Baranyi, C., Toenshoff, E.R., Daims, H., Wagner, M. Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2363-2367. 2006.
Strous, M., Heijnen, J., Kuenen, J.G., Jetten, M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms.Applied microbiology and biotechnology, 50(5), 589-596. 1998.
Strous, M., Jetten, M.S. Anaerobic oxidation of methane and ammonium. Annu. Rev. Microbiol., 58, 99-117. 2004.
Strous, M., Kuenen, J.G., Jetten, M.S. Key physiology of anaerobic ammonium oxidation. Applied and environmental microbiology, 65(7), 3248-3250. 1999.
Sung, S., Dague, R.R. Laboratory studies on the anaerobic sequencing batch reactor. Water Environment Research, 67(3), 294-301. 1995.
Tavares, P., Pereira, A., Moura, J., Moura, I. Metalloenzymes of the denitrification pathway. Journal of inorganic biochemistry, 100(12), 2087-2100. 2006.
Thamdrup, B., Schubert, C.J. Anaerobic oxidation of methane in an iron‐rich Danish freshwater lake sediment. Limnology and Oceanography, 58(2), 546-554. 2013.
Thauer, R.K., Shima, S. Methane as fuel for anaerobic microorganisms. Annals of the New York Academy of Sciences, 1125(1), 158-170. 2008.
Third, K., Paxman, J., Schmid, M., Strous, M., Jetten, M., Cord-Ruwisch, R. Enrichment of anammox from activated sludge and its application in the CANON process. Microbial Ecology, 49(2), 236-244. 2005.
Tiedje, J.M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biology of anaerobic microorganisms, 717, 179-244. 1988.
Till, B.A., Weathers, L.J., Alvarez, P.J. Fe (0)-supported autotrophic denitrification. Environmental Science & Technology, 32(5), 634-639. 1998.
Trotsenko, Y.A., Murrell, J.C. Metabolic Aspects of Aerobic Obligate Methanotrophy⋆. Advances in applied microbiology, 63, 183-229. 2008.
Van Ginkel, S.W., Ahn, C.H., Badruzzaman, M., Roberts, D.J., Lehman, S.G., Adham, S.S., Rittmann, B.E. Kinetics of nitrate and perchlorate reduction in ion-exchange brine using the membrane biofilm reactor (MBfR). water research, 42(15), 4197-4205. 2008.
Wang, D., Wang, Y., Liu, Y., Ngo, H.H., Lian, Y., Zhao, J., Chen, F., Yang, Q., Zeng, G., Li, X. Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? Bioresource Technology. 2017a.
Wang, D., Zhao, J., Zeng, G., Chen, Y., Bond, P.L., Li, X. How does poly (hydroxyalkanoate) affect methane production from the anaerobic digestion of waste-activated sludge?Environmental science & technology, 49(20), 12253-12262. 2015.
Wang, S., Wu, Q., Lei, T., Liang, P., Huang, X. Enrichment of denitrifying methanotrophic bacteria from Taihu sediments by a membrane biofilm bioreactor at ambient temperature. Environmental Science and Pollution Research, 23(6), 5627-5634. 2016.
Wang, Y., Wang, D., Yang, Q., Zeng, G., Li, X. Wastewater opportunities for denitrifying anaerobic methane oxidation. Trends in Biotechnology. 2017b.
Wang, Y., Zhu, G., Harhangi, H.R., Zhu, B., Jetten, M.S., Yin, C., Op den Camp, H.J. Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS microbiology letters, 336(2), 79-88. 2012.
Wu, M.L., van Alen, T.A., van Donselaar, E.G., Strous, M., Jetten, M.S., van Niftrik, L. Co-localization of particulate methane monooxygenase and cd 1 nitrite reductase in the denitrifying methanotroph ‘Candidatus Methylomirabilis oxyfera’. FEMS microbiology letters, 334(1), 49-56. 2012.
Zhang, T., Lampe, D. Sulfur–limestone autotrophic denitrification system for remediation of nitrate-contaminated groundwater. Final report submitted to the USGS, section, 104. 1996.
Zhang, T.C., Lampe, D.G. Sulfur: limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch experiments. Water research, 33(3), 599-608. 1999.
Zhu, B., van Dijk, G., Fritz, C., Smolders, A.J., Pol, A., Jetten, M.S., Ettwig, K.F. Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Applied and environmental microbiology, 78(24), 8657-8665. 2012.
Zhu, J., Wang, Q., Yuan, M., Tan, G.-Y.A., Sun, F., Wang, C., Wu, W., Lee, P.-H. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water research, 90, 203-215. 2016.
Zumft, W.G. Cell biology and molecular basis of denitrification. Microbiology and molecular biology reviews, 61(4), 533-616. 1997.
田詩媛,利用Clostridium ljungdahlii固定二氧化碳產製乙酸之研究,國立成功大學環境工程學系碩士論文,2017。
張婷婷,除氮系統中與無氧氨氧化菌共存之微生物組成分析,國立中興大學環境工程學系碩士論文,2009。
劉成彬,以厭氧流體化薄膜生物反應器處理不同有機物濃度廢水之研究,國立成功大學環境工程學系碩士論文,2017。