| 研究生: | 馬偉智 Ma, Wei-Chih | 
|---|---|
| 論文名稱: | 非線性薛丁格極限與札哈洛夫系統下的初始層 The Nonlinear Schrödinger Limit and The Initial Layer of The Zakharov Equations | 
| 指導教授: | 方永富 Fang, Yung-fu | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 理學院 - 數學系應用數學碩博士班 Department of Mathematics | 
| 論文出版年: | 2017 | 
| 畢業學年度: | 105 | 
| 語文別: | 英文 | 
| 論文頁數: | 107 | 
| 中文關鍵詞: | 札哈洛夫系統 、非線性薛丁格方程 、初始層形成 | 
| 外文關鍵詞: | Zakharov equations, nonlinear Schrödinger equation, the formation of the initial layers | 
| 相關次數: | 點閱:120 下載:5 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
我們仔細研讀了這篇由T. Ozawa 和Y. Tsutsumi 兩位學者所發表的論文,論文名為 “The Nonlinear Schrödinger Limit and The Initial Layer of The Zakharov Equations”[18],並且我們闡述相關細節在本篇報告裡。
在離子速度趨近於無窮大時,札哈洛夫系統裡解的收斂性被討論著。系統下的
解會趨近於所對應到的非線性薛丁格方程的解,而且他們也解釋了初始層現象如何去影響著。也給出了收斂速率  和初始層形成之間的關係刻劃。
在這篇論文裡,我們詳細呈現他們在論文裡所省略的細節、修正一些錯誤,包括在
公式和證明裡所出現的打字與編排錯誤。
We study the paper “The Nonlinear Schrödinger Limit and The Initial Layer of The Zakharov Equations”, by T. Ozawa and Y. Tsutsumi [18], in details and we elaborate the work in this report.
The formation of the convergence of solutions for Zakharov equations as the ion sound speed   goes to infinity is discussed. The decay rate of the solutions tending to the
corresponding solutions for the nonlinear Schrödinger equation is given and they explain how the initial layer phenomena occur. A characterization is given of the relation between the convergence rate in and the formation of the initial layers.
We present the details which is skipped in the paper and put in this thesis, we have revised some mistakes, including typos, in some formulas and in the proofs.
[1] H. Added and S. Added, Existence globale de solutions fortes pour les équations de la turbulence de
Langmuir en dimension 2. C. R. Acad. Sci. Paris, 299, 551-554, 1984.
[2] H. Added and S. Added, Equations of Langmuir turbulence and nonlinear Schrödinger equation:
smoothness and approximation. J. Funct. Anal., 79, 183-210, 1988.
[3] K. Asano, On the incompressible limit of the compressible Euler equation. Japan J. Appl. Math., 4,
455-488, 1987.
[4] J. Gibbons, Behaviour of slow Langmuir solitons. Phys. Letter, 67A, 22-24, 1978.
[5] J. Gibbons, S.G. Thornhill, M.J. Wardrop and D. Ter Haar, On the theory of Langmuir solitons. J.
Plasma Phys., 17, 153-170, 1977.
[6] R.T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger
equations. J. Math. Phys., 18, 1794-1797, 1977.
[7] F. John, “Plane waves and spherical means applied to partial differential Equations”. Interscience
Publishers, London, 1955.
[8] T. Kato, On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Phys. Théor., 46, 113-129,
1987.
[9] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation.
Comm. Pure Appl. Math., 38, 321-332, 1985.
[10] V.G. Makhankov, Dynamics of classical solitons (in non-integrable systems). Phys. Reports, 35,
1-128, 1978.
[11] T. Ozawa and Y. Tsutsumi, Existence and smoothing effect of solutions for the Zakharov equations.
RIMS, Kyoto Univ., 28, 329-361, 1992.
[12] T. Ozawa and Y. Tsutsumi, The nonlinear Schrödinger limit and the initial layer of the Zakharov
equations. Proc. Japan Acad, 67A, 113-116, 1991.
[13] S.H. Schochet and M.I. Weinstein, The nonlinear Schrödinger limit of Zakharov equations governing
Langmuir turbulence. Comm. Math. Phys., 106, 569-580, 1986.
[14] C. Sulem and P.L. Sulem, Quelques résultats de régularité pour les équations de la turbulence de
Langmuir. C. R. Acad. Sci. Paris, 289, 173-176, 1979.
[15] M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear
Schrödinger equations. SIAM J. Math. Anal., 15, 357-366, 1984.
[16] S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation. J. Math.
Kyoto Univ., 26, 323-331, 1986.
[17] V.E. Zakharov, Collapse of Langmuir waves. Sov. Phys. JETP, 35, 908-914, 1972.
[18] T. Ozawa and Y. Tsutsumi, The nonlinear Schrödinger limit and the initial layer of the Zakharov
equations. Differential and Integral Equations, Volume 5, Number 4, 721-745, July 1992.
[19] Walter A. Strauss, “Partial Differential Equations: an introduction.”. John Wiley & Sons, LTD. 2
edition, 2007.
[20] William R. Wade, “An introduction to analysis”. Pearson Prentice Hall. 3 edition, 2004.
[21] Lawrence C. Evans, “Partial differential equations”. American Mathematical Society, 1998.
[22] Lawrence C. Evans, “Partial differential equations”. American Mathematical Society, 2010.