| 研究生: |
黃俊瑋 Huang, Chun-Wei |
|---|---|
| 論文名稱: |
探討機車拆解之經濟效益及環境衝擊:以台灣為例 Exploring The Economic Benefits And Environmental Impacts of Motorcycle Dismantling : A Case Study in Taiwan |
| 指導教授: |
林聖倫
Lin, Sheng-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | End-of-life vehicles (ELVs) 、拆解 、回收過程改善 、生命週期評估 |
| 外文關鍵詞: | End-of-life vehicles (ELVs), Disassembly, Recycling process improvements, Life cycle assessment |
| 相關次數: | 點閱:22 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
報廢車輛 (End-of-Life Vehicles, ELV) 含有大量可回收材料,是資源循環與廢棄物管理的重要關鍵之一。儘管台灣每年報廢的機車數量龐大,但相較於汽車,其回收與處理的研究與討論仍相對不足。本研究聚焦於台灣地區報廢摩托車的拆解流程,旨在分析現行拆解效率與挑戰,並提出具體優化建議,以提升整體處理效能與環境永續性。
目前台灣機車拆解作業高度依賴人工操作,拆解過程耗時且勞力密集,導致成本升高,進而降低業者參與意願而影響回收率。為深入探討此問題,本研究記錄並分析不同類型摩托車的實際拆解時間,並採用直接測量與拆解難易度指標 (eDiM, ease of Disassembly Metric) 方法進行比較,識別影響拆解效率的關鍵因素。研究結果顯示,「車體 (Body)」類別的零件拆解最為耗時,尤其是車殼,主要因其結構複雜、螺絲數量多且規格不一,需頻繁更換工具,造成拆卸時間顯著增加。此類零件回收價值低,卻占據大量工時,對整體回收效益產生負面影響。
為整合環境與經濟層面的考量,研究亦導入生命週期評估 (Life Cycle Assessment, LCA) 與環境貨幣化方法,將碳排放等環境衝擊做為考量並轉換為經濟價值,以建立回收效益模型。模擬不同再利用情境後發現,適當設定「拆解停止點」可避免資源錯置,提升整體回收利潤與環境效益。研究建議製造商應從產品設計階段納入可拆解性原則,包括螺絲標準化、零件模組化與材料選擇簡化,同時強化與拆解業者間的資訊共享,以共同因應未來資源回收挑戰。研究成果亦適用於電動機車於拆解流程的優化,具備實務推廣潛力與政策參考價值。
End-of-Life Vehicles (ELVs) contain valuable recyclable materials, making them critical to resource recovery. Despite the large number of scrapped motorcycles in Taiwan, research on their dismantling and recycling remains limited. This study investigates the dismantling process of Taiwanese motorcycles, aiming to identify inefficiencies and propose improvements for enhanced sustainability and economic viability. Motorcycle dismantling in Taiwan is labor-intensive and time-consuming, raising costs and discouraging recycling efforts. By recording dismantling times for various motorcycle types using direct measurement and the ease of Disassembly Metric (eDiM), the study identifies key inefficiency factors. Results show that "Body" components—especially outer shells—consume the most time due to complex structures and diverse screw specifications, despite having low recycling value. To integrate environmental and economic aspects, Life Cycle Assessment (LCA) and monetization methods were applied. Scenario analysis suggests that defining a “dismantling cut-off point” can improve overall efficiency and benefits. The study recommends incorporating design-for-disassembly principles, such as screw standardization and material simplification, and enhancing information sharing between manufacturers and dismantlers to meet future recycling challenges. The findings are also relevant to electric motorcycle recycling.
1. Afrinaldi, F., Saman, M. Z. M., & Shaharoun, A. M. (2008a). Computer-based End-of-Life Product Disassemblability Evaluation Tool.
2. Afrinaldi, F., Saman, M. Z. M., & Shaharoun, A. M. (2008b). THE EVALUATION METHODS OF DISASSEMBLABILITY FOR AUTOMOTIVE COMPONENTS – A REVIEW AND AGENDA FOR FUTURE RESEARCH.
3. Alfaro-Algaba, M., & Ramirez, F. J. (2020). Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resources, Conservation and Recycling, 154, 104461. https://doi.org/10.1016/j.resconrec.2019.104461
4. Ardente, F., Mathieux, F., & Recchioni, M. (2014). Recycling of electronic displays: Analysis of pre-processing and potential ecodesign improvements. Resources, Conservation and Recycling, 92, 158–171. https://doi.org/10.1016/j.resconrec.2014.09.005
5. Arendt, R., Bachmann, T. M., Motoshita, M., Bach, V., & Finkbeiner, M. (2020). Comparison of Different Monetization Methods in LCA: A Review. Sustainability, 12(24), 10493. https://doi.org/10.3390/su122410493
6. Belboom, S., Lewis, G., Bareel, P.-F., & Léonard, A. (2016). Life cycle assessment of hybrid vehicles recycling: Comparison of three business lines of dismantling. Waste Management, 50, 184–193. https://doi.org/10.1016/j.wasman.2016.02.007
7. Boks, C. B., Kroll, E., Brouwers, W. C. J., & Stevels, A. L. N. (1996). Disassembly modeling: Two applications to a Philips 21" television set. Proceedings of the 1996 IEEE International Symposium on Electronics and the Environment. ISEE-1996, 224–229. https://doi.org/10.1109/ISEE.1996.501882
8. Bond, M. (n.d.). The Carbon Footprint of WEEE (Waste Electronic and Electrical Equipment) in the UK – a case study based on the.
9. (Commission Decision of 9 June 2011 on Establishing the Ecological Criteria for the Award of the EU Ecolabel for Personal Computers (Notified under Document C(2011) 3737)Text with EEA Relevance, n.d.).
10. Council, D. P. (2013). Technical support document:-technical update of the social cost of carbon for regulatory impact analysis-under executive order 12866. Environmental Protection Agency.
11. Dong, Y., Hauschild, M., Sørup, H., Rousselet, R., & Fantke, P. (2019). Evaluating the monetary values of greenhouse gases emissions in life cycle impact assessment. Journal of Cleaner Production, 209, 538–549. https://doi.org/10.1016/j.jclepro.2018.10.205
12. Erdmann, J. G., Koller, J., Brimaire, J., & Döpper, F. (2023). Assessment of the disassemblability of electric bicycle motors for remanufacturing. Journal of Remanufacturing, 13(2), 137–159. https://doi.org/10.1007/s13243-023-00124-1
13. Eriksen, K. A. (n.d.). New Demands on Design for Disassembly to Improve Recycling of Electrical and Electronical Products.
14. European Commission. Joint Research Centre. Institute for Environment and Sustainability. (2013). Environmental footprint and material efficiency support for product policy: Report on benefits and impacts/costs of options for different potential material efficiency requirements for electronic displays. Publications Office. https://data.europa.eu/doi/10.2788/28569
15. Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in Life Cycle Assessment. Journal of Environmental Management, 91(1), 1–21. https://doi.org/10.1016/j.jenvman.2009.06.018
16. Flipsen, B., Bakker, C., & de Pauw, I. (n.d.). Hotspot Mapping for product disassembly; a circular product as- sessment method.
17. Go, T. F., Wahab, D. A., Rahman, M. N. Ab., Ramli, R., & Azhari, C. H. (2011). Disassemblability of end-of-life vehicle: A critical review of evaluation methods. Journal of Cleaner Production, 19(13), 1536–1546. https://doi.org/10.1016/j.jclepro.2011.05.003
18. Goedkoop, M., Heijungs, R., & Huijbregts, M. (n.d.). Report I: Characterisation.
19. IEEE Std 1680.3-2012 IEEE Standard for Environmental Assessment of Televisions. (n.d.).
20. ISO-14040-2006.pdf. (n.d.).
21. ISO-14044-2006.pdf. (n.d.).
22. Kroll, E. (1995). Ease-of-Disassembly Evaluation in Product Recycling. Unpublished Technical Report. Department of Mechanical Engineering. Texas A&M University.
23. Kroll, E. (1996). Application of Work-Measurement Analysis to Product Disassembly for Recycling. Concurrent Engineering, 4(2), 149–158. https://doi.org/10.1177/1063293X9600400205
24. Lee, S. C., & Shih, L. H. (2012). A novel heuristic approach to determine compromise management for end-of-life electronic products. Journal of the Operational Research Society, 63(5), 606–619. https://doi.org/10.1057/jors.2011.50
25. Li, S., Thompson, M., Moussavi, S., & Dvorak, B. (2021). Life cycle and economic assessment of corn production practices in the western US Corn Belt. Sustainable Production and Consumption, 27, 1762–1774. https://doi.org/10.1016/j.spc.2021.04.021
26. Life Cycle Sustainability Assessment: What Is It and What Are Its Challenges? (2016). In J. Guinée, Taking Stock of Industrial Ecology (pp. 45–68). Springer International Publishing. https://doi.org/10.1007/978-3-319-20571-7_3
27. McManus, M. C., & Taylor, C. M. (2015). The changing nature of life cycle assessment. Biomass and Bioenergy, 82, 13–26. https://doi.org/10.1016/j.biombioe.2015.04.024
28. Navrud, S., & Ready, R. (2007). Environmental value transfer: Issues and methods (Vol. 9). Springer.
29. Percoco, G., & Diella, M. (2013). Preliminary Evaluation of Artificial Bee Colony Algorithm When Applied to Multi Objective Partial Disassembly Planning. Research Journal of Applied Sciences, Engineering and Technology, 6(17), 3234–3243. https://doi.org/10.19026/rjaset.6.3628
30. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701–720. https://doi.org/10.1016/j.envint.2003.11.005
31. ReCiPe 2008_A lcia method which comprises harmonised category indicators at the midpoint and the endpoint level_First edition Characterisation.pdf. (n.d.).
32. Rickli, J. L., & Camelio, J. A. (2013). Multi-objective partial disassembly optimization based on sequence feasibility. Journal of Manufacturing Systems, 32(1), 281–293. https://doi.org/10.1016/j.jmsy.2012.11.005
33. Rybaczewska-Błażejowska, M., & Jezierski, D. (2024). Comparison of ReCiPe 2016, ILCD 2011, CML-IA baseline and IMPACT 2002+ LCIA methods: A case study based on the electricity consumption mix in Europe. The International Journal of Life Cycle Assessment, 29(10), 1799–1817. https://doi.org/10.1007/s11367-024-02326-6
34. Sarofim, M. C., & Giordano, M. R. (2018). A quantitative approach to evaluating the GWP timescale through implicit discount rates. Earth System Dynamics, 9(3), 1013–1024. https://doi.org/10.5194/esd-9-1013-2018
35. Schneider, F., Castillo Castro, D. S., Weng, K.-C., Shei, C.-H., & Lin, H.-T. (2023). Comparative Life Cycle Assessment (LCA) on battery electric and combustion engine motorcycles in Taiwan. Journal of Cleaner Production, 406, 137060. https://doi.org/10.1016/j.jclepro.2023.137060
36. Shih, L.-H., & Lee, S.-C. (2007). Optimizing Disassembly and Recycling Process for EOL LCD-Type Products: A Heuristic Method. IEEE Transactions on Electronics Packaging Manufacturing, 30(3), 213–220. https://doi.org/10.1109/TEPM.2007.901172
37. Smith, S., Hsu, L.-Y., & Smith, G. C. (2016). Partial disassembly sequence planning based on cost-benefit analysis. Journal of Cleaner Production, 139, 729–739. https://doi.org/10.1016/j.jclepro.2016.08.095
38. Smith, S., & Hung, P.-Y. (2015). A novel selective parallel disassembly planning method for green design. Journal of Engineering Design, 26(10–12), 283–301. https://doi.org/10.1080/09544828.2015.1045841
39. Tian, J., & Chen, M. (2014). Sustainable design for automotive products: Dismantling and recycling of end-of-life vehicles. Waste Management, 34(2), 458–467. https://doi.org/10.1016/j.wasman.2013.11.005
40. Vanegas, P., Peeters, J. R., Cattrysse, D., Duflou, J. R., Tecchio, P., Mathieux, F., & Ardente, F. (2016). Study for a method to assess the ease of disassembly of electrical and electronic equipment: Method development and application to a flat panel display case study. Publications Office.
41. Vanegas, P., Peeters, J. R., Cattrysse, D., Tecchio, P., Ardente, F., Mathieux, F., Dewulf, W., & Duflou, J. R. (2018). Ease of disassembly of products to support circular economy strategies. Resources, Conservation and Recycling, 135, 323–334. https://doi.org/10.1016/j.resconrec.2017.06.022
42. Wenzel, H., Hauschild, M. Z., & Alting, L. (2000). Environmental Assessment of Products: Volume 1: Methodology, tools and case studies in product development (Vol. 1). Springer Science & Business Media.
43. Yu, Z., Tian, X., Gao, Y., Yuan, X., Xu, Z., & Zhang, L. (2023). Monitoring the Resources and Environmental Impacts from the Precise Disassembly of E-Waste in China. Environmental Science & Technology, 57(22), 8256–8268. https://doi.org/10.1021/acs.est.2c09157
44. 臺灣期貨交易所,https://www.taifex.com.tw/cht/3/dailyFXRate
45. 環境部環境循環署:https://www.reca.gov.tw/
46. 劉宜君. (2009). 生命週期評估概念在公共政策應用之探討. 國家發展委員會
47. 李清華. (2023). 廢車精細拆解殘餘可燃物高值應用評估計畫(EPA-112-XA01).環境部資源循環署