| 研究生: |
李思賢 Lee, Szu-hsien |
|---|---|
| 論文名稱: |
微流體系統應用於養殖漁業之快速病原偵測 A Microfluidic Reverse Transcription-Polymerase Chain Reaction System Integrated with a Fluoresent Detection System for Aquaculture Disease Detection |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 石斑魚神經壞死症病毒 、石斑魚抗病毒蛋白Mx基因 、鰻弧菌 、微機電系統 、反轉錄-聚合酶連鎖反應 、螢光偵測 、微流體 、虹彩病毒 、蠕動式微型氣動幫浦 、養殖漁業 |
| 外文關鍵詞: | Vibrio anguillarum, Microheater, MEMS, Microfluidics, RT-PCR, Micropumps, Nervous necrosis virus, end-point detection, Iridovirus, grouper Mx protein gene |
| 相關次數: | 點閱:166 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一整合型微流體晶片系統,可全程自動化地一次進行 4 組反轉錄-聚合連鎖反應,並應用於養殖漁業疾病之快速檢測。此系統包含微型溫控模組與微流體輸送模組,前者藉由微型溫度感測器及微型陣列式自補償加熱器,提供精準、快速且均勻輸出的溫度條件,使生化反應順利進行;後者整合蠕動式微型氣動幫浦與微管道,提供了生物相容性高及可拋棄性,並在程式化控制下傳輸流體,自動銜接兩步驟反轉錄-聚合連鎖反應的各項試劑輸送程序,取代了傳統上繁雜而耗時的人工操作。再者,本研究利用隨機引子,成功地整併反轉錄反應的晶片設計,解決先前研究中試劑浪費問題的同時也一次滿足了多個聚合連鎖反應之需求。也由於反轉錄反應的整併,將反轉錄產物輸送至各個聚合連鎖反應槽的步驟可以同時進行,因此反轉錄反應與聚合連鎖反應槽之間的所有微型氣動幫浦僅需要一個電磁閥同步控制即可。這些微型氣動幫浦的同時作動,加上等長的微管道流阻相等,因此反轉錄產物輸送至聚合連鎖反應槽的同時,也完成了反轉錄產物分配的動作。此一微流體晶片系統是利用微機電系統技術製成(Micro-electro- mechanical-system, MEMS),擁有反應靈敏、檢測速度高、成本低廉、過程自動化、人為失誤降低、樣品與試劑使用量減少等優點。本晶片系統的升降溫速度分別達20℃/ 10℃,優於使用傳統聚合連鎖反應儀器的5℃/ 2℃,且均勻性較傳統區塊式的加熱器為佳。實驗資料顯示,以隨機引子完成反轉錄反應後,確實可在聚合連鎖反應中增幅產物。目前,此系統已針對高經濟價值的石斑魚種,成功地偵測到石斑魚神經壞死症病毒、虹彩病毒與鰻弧菌等 3 種病原的RNA基因片段,以及石斑魚感染病毒時表現量會產生明顯提升的抗病毒Mx蛋白基因(RNA)。以微流體晶片系統對以上RNA片段進行偵測,偵測極限最低皆可達到 101 copies/ml,優於傳統聚合連鎖反應儀器的 103 copies/ml。以微流體晶片系統進行全反應的時間僅需2.5小時,優於使用傳統聚合連鎖反應儀器的4小時。目前使用螢光偵測模組之偵測極限為103 copies/ml,可提供重要的系統可攜性。對於多年來深受病毒型疾病影響而損失慘重的養殖漁業,此一具有可擴充性的晶片系統,足可取代檢測時間冗長、靈敏度等條件亦較差的傳統儀器,為降低經濟損失、遏止病原擴散,以及病原感染機制的相關研究提供更有效率的工具。
This study presents an integrated microfluidic system for fast diagnosis of agricultural diseases with the ability to perform 4 reverse-transcription polymerase chain reaction (RT-PCR) processes at the same time in an automatic format. This system integrates a micro temperature control module and a microfluidic control module. The micro temperature control module comprising micro temperature sensors and array-type microheaters provides precise, fast, and uniform temperature conditions for bio-reaction. The microfluidic control module made of biocompatible materials can transport samples and reagents by using pneumatic micropumps, microvavles and microchannels. Moreover, by using random primers into the reverse-transcription process, the chip design can be simplified and the consumption of reverse-transcription (RT) products in the following multiple polymerase chain reactions (PCR) is also minimized. Since there is only one reverse-transcription reaction involved, the following steps for distributing reverse-transcription products to four PCR chambers can be done simultaneously. When the transportation process between the RT chamber and the PCR chambers was finished, PCR process was then performed to amplify detection genes for each RNA-based virus. This microfluidic chip system fabricated by using micro-electro-mechanical-system (MEMS) technology may have the following advantages, including high sensitivity, fast diagnosis, disposability, low reagent and sample consumption, portability, low power consumption and low cost. The rapid heating/ cooling of this thermocycling system is 20℃/ 10℃. Experimental data showed that the developed system can successfully detect 4 kinds of purified RNA samples, including Nervous Necrosis Virus, Irido virus, Vibrio anguillarum, and grouper Mx protein gene. The detection limit of this system was found to be 101 copies/ ml while the conventional method was 103 copies/ ml. The total reaction time of this developed method was about 2.5 hours. An end-point detection module was also fabricated in this study. The detection limit of the end-point detection module was 103 copies/ ml. The end-point detection module could be integrated into the microcluidic system for its portability. The developed microfluidic system may provide a powerful tool for fast disease diagnosis of RNA-based virus.
[1] B. Dixon, "Microarray technology: an array of applications that is far from micro," Biotechnology Advances, vol. 20, pp. 361-362, 2002.
[2] A. R. Kopf-Sill, "Successes and challenges of lab-on-a-chip," Lab on a Chip, vol. 2, pp. 42n-47n, 2002.
[3] D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Analytical Chemistry, vol. 74, pp. 2623-2636, 2002.
[4] P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, "Micro total analysis systems. 2. Analytical standard operations and applications," Analytical Chemistry, vol. 74, pp. 2637-2652, 2002.
[5] T. Vilkner, D. Janasek, and A. Manz, "Micro total analysis systems. Recent developments," Analytical Chemistry, vol. 76, pp. 3373-3385, 2004.
[6] A. van den Berg and T. S. J. Lammerink, "Micro total analysis systems: microfluidic aspects, integration concept and applications," Microsystem Technology in Chemistry and Life Science, vol. 194, pp. 21-49, 1998.
[7] M. Arimoto, K. Mushiake, Y. Mizuta, T. Nakai, K. Muroga, and I. Furusawa, "Detection of striped Jack Nervous Necrosis Virus (SJNNV) by Enzyme-Linked- Immunosorbent-Assay (ELISA)," Fish Pathology, vol. 27, pp. 191-195, 1992.
[8] T. Nishizawa, K. Mori, T. Nakai, I. Furusawa, and K. Muroga, "Polymerase-Chain-Reaction (PCR) Amplification of RNA of Striped Jack Nervous Necrosis Virus (SJNNV)," Diseases of Aquatic Organisms, vol. 18, pp. 103-107, 1994.
[9] S. C. Chi, W. W. Hu, and B. J. Lo, "Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV)," Journal of Fish Diseases, vol. 22, pp. 173-182, 1999.
[10] M. Comps, M. Trindade, and C. Delsert, "Investigation of fish encephalitis viruses (FEV) expression in marine fishes using DIG-labelled probes," Aquaculture, vol. 143, pp. 113-121, 1996.
[11] 齊肖琪, "魚類神經壞死症病毒快速檢測試劑," vol. 98, pp. 1-5, 2006.
[12] S. H. Lee, M. C. Ou, T. Y. Chen, and G. B. Lee, "Integrated Microfluidic Chip for Fast Diagnosis of Piscine Nodavirus," Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International, pp. 943-946, 2007.
[13] M. A. Northrup, C. Gonzalez, D. Hadley, R. F. Hills, O. Landre, S. Lehew, R. Saiki, J. J. Shinsky, R. Watson, and W. R. Jr., "A MEMS-based miniature DNA analysis system," Proceeding of Transducers, pp. 764-767, 1995.
[14] E. T. Lagally and R. A. Mathies, "Integrated PCR-CE system for DNA analysis to the single molecule limit," Micro Total Analysis Systems, pp. 117-118, 2001.
[15] C. S. Liao, G. B. Lee, J. J. Wu, C. C. Chang, T. M. Hsieh, F. C. Huang, and C. H. Luo, "Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases," Biosensors & Bioelectronics, vol. 20, pp. 1341-1348, 2005.
[16] C. S. Liao, Lee, G. B., Liu, H. S., Hsieh, T. M., Luo, C. H., "Miniature RT-PCR system for diagnosis of RNA-based viruses," Nucleic Acids Research, vol. 33, p. e156, 2005.
[17] D. S. Yoon, Y. S. Lee, Y. Lee, H. J. Cho, S. W. Sung, K. W. Oh, J. Cha, and G. Lim, "Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip," Journal of Micromechanics and Microengineering, vol. 12, pp. 813-823, 2002.
[18] Q. B. Zou, U. Sridhar, Y. Chen, and J. Singh, "Miniaturized, independently controllable multichamber thermal cycler," IEEE Sensors Journal, vol. 3, pp. 774-780, 2003.
[19] M. U. Kopp, A. J. de Mello, and A. Manz, "Chemical amplification: continuous-flow PCR on a chip," Science, vol. 280, pp. 1046-1048, 1998.
[20] P. J. Obeid, T. K. Christopoulos, and H. J. Crabtree, "Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection," Analytical Chemistry, vol. 75, pp. 288-295, 2003.
[21] T. M. Hsieh, C. H. Luo, F. C. Huang, J. H. Wang, L. J. Chien, and G. B. Lee, "Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction," Sensors and Actuators B-Chemical, vol. 130, pp. 848-856, 2008.
[22] T. M. Hsieh, Huang, F.C., Liao, C.S., Wang, C.H., Luo, C. H. and Lee, G. B., "A new self-compensated thermocycler for polymerase chain reaction," Transducers, Lyon, France, 2007.
[23] S. L. Zeng, C. H. Chen, J. G. Santiago, J. R. Chen, R. N. Zare, J. A. Tripp, F. Svec, and J. M. J. Frechet, "Electroosmotic flow pumps with polymer frits," Sensors and Actuators B-Chemical, vol. 82, pp. 209-212, 2002.
[24] A. Olsson, P. Enoksson, G. Stemme, and E. Stemme, "A valve-less planar pump isotropically etched in silicon," Journal of Micromechanics and Microengineering, vol. 6, pp. 87-91, 1996.
[25] E. Makino, T. Mitsuya, and T. Shibata, "Fabrication of TiNi shape memory micropump," Sensors and Actuators A-Physical, vol. 88, pp. 256-262, 2001.
[26] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science, vol. 288, pp. 113-116, 2000.
[27] C. H. Wang, Lee, G. B., "Pneumatic-driven peristaltic micropumps utilizing serpentine-shape channels," Journal of Micromechanics and Microengineering, vol. 16, pp. 341-348, 2006.
[28] C. W. Huang, S. B. Huang, and G. B. Lee, "Pneumatic micropumps with serially connected actuation chambers," Journal of Micromechanics and Microengineering, vol. 16, pp. 2265-2272, 2006.
[29] "Overview of fish production, utilization, consumption and trade," FAO, 2002.
[30] 歐明昌, "石斑魚神經壞死病毒B2基因功能分析及檢測方法開發," 國立成功大學生物科技研究所碩士論文, 2007.
[31] H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, S. L. Zipursky, and J. Darnell, "Molecular cell biology," 5 ed: Freeman Publishing, New York, W. H., USA, 2004.
[32] F. Crick, "Central dogma of molecularbiology," Nature, vol. 227, pp. 561 - 563, 1970.
[33] G. Karp, "Cell and molecular biology: concept and experiments," 3 ed: John Wiley & Sons Inc. ,New York, USA, 2002.
[34] L. V. Kendall and L. K. Riley, "Reverse transcriptase polymerase chain reaction," The American Association for Laboratory Animal Science, 2000.
[35] A. I. Sair, D. H. D'Souza, C. L. Moe, and L. A. Jaykus, "Improved detection of human enteric viruses in foods by RT-PCR," Journal of Virological Methods, vol. 100, pp. 57-69, 2002.
[36] X. Nie and R. P. Singh, "A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves, and tubers," Journal of Virological Methods, vol. 91, pp. 37-49, 2001.
[37] I. M. Brodie, J. J., "The physics of microfabrication," Plenum Press, New York, 1982.
[38] H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. De Ceuninck, and L. De Schepper, "The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors," Sensors and Actuators B-Chemical, vol. 65, pp. 190-192, 2000.
[39] Z. Nagy and S. Agachi, "Model predictive control of a PVC batch reactor," Computers & Chemical Engineering, vol. 21, pp. 571-591, 1997.
[40] G. Diaz, M. Sen, K. T. Yang, and R. L. McClain, "Dynamic prediction and control of heat exchangers using artificial neural network," International Journal of Heat and Mass Transfer, vol. 44, pp. 1671-1679, 2001.
[41] T. D. Schmittgen, B. A. Zakrajsek, A. G. Mills, V. Gorn, M. J. Singer, and M. W. Reed, "Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods," Analytical Biochemistry, vol. 285, pp. 194-204, 2000.
[42] A. J. Tobin and J. Dusheck, "Asking about life," Harcourt College Publishers, 1999.
[43] G. B. Lee, J. H. Hu, and J. J. Miau, "A flexible skin with temperature sensor array," Journal of the Chinese Institute of Engineers, 2002.
[44] B. E. Slentz, N. A. Penner, and F. E. Regnier, "Capillary Electrochromatography of Peptides on Microfabricated Poly(dimethylsiloxane) Chips Modified by Cerium(IV)-catalyzed Polymerization," Journal of Chromatography A, vol. 948, pp. 225–233, 2002.
[45] "Data sheet for NANOTM SU-8 negative tone photoresists," formulations 50 & 100, MICRO-CHEM. Corp.
[46] C. B. Chao, Yang, S. C., Tsai, H. Y., Chen, C. Y., Lin, C. S. and Huang H. T., "A nested PCR for the detection of Grouper Iridovirus in Taiwan (TGIV) in cultured hybrid grouper, giant seaperch and largemouth bass.," Journal of Aquatic Animal Health, vol. 14, pp. 104-113, 2002.
[47] 蘇永霖, "石斑魚抗病毒蛋白Mx 之表現及特性分析," 國立成功大學生物科技研究所碩士論文, 2005.
[48] 吳政隆, "發展以弧菌為載體之石斑魚神經壞死病疫苗," 國立成功大學生物科技研究所碩士論文, 2005.
[49] 連剛逸, "整合型微流體晶片系統應用於樣品前處理及快速核酸增幅," 國立成功大學奈米科技暨微系統工程研究所碩士論文, 2007.