簡易檢索 / 詳目顯示

研究生: 朱哲民
Chu, Tse-Min
論文名稱: 開發逆式壓印技術及其應用於大尺寸可撓曲OLED面板與OLED封裝膜之製備
The development of reversal imprinting lithography and its application on large area flexible OLED display and the fabrication of OLED passivation
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 183
中文關鍵詞: 壓印技術有機發光二極體封裝
外文關鍵詞: passivatioin, imprinting technique, OLED
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近幾年來,光電資訊產業發展蓬勃,對於更輕薄的平面顯示器之需求更是日益增加,因此在可撓曲塑膠基板上製作有機發光二極體元件(OLED)無疑是下一世代平面顯示器的主流。目前許多圖案製作技術當中,壓印技術(imprinting lithography)可以改善光學微影蝕刻的多項缺點,而其優點在於設備與操作成本低、生產彈性大、可做立體的蝕刻技術;故本研究中將利用壓印技術應用於四吋可撓曲OLED面板的製作,此外由於OLED非常怕其水氣與氧氣的侵入而造成元件的衰退,所以也對OLED的封裝膜進行探討。

      此外,為解決熱壓印(hot embossing)技術中殘留層太厚及壓印時間過長的問題而開發了逆式壓印(reversal imprinting),其是利用具有雙官能基之界面活性劑(surfactant)將所使用的阻劑完全填入模版的凹槽內部,再利用基板與之緊密貼合,最後模板的圖案可忠實的轉移至基板上,目前480μm~100nm都已經可以完整轉印出來。

      以上述的壓印方式來製備OLED顯示面板,並利用電漿聚合的方式沉積MMA/HMDSO多層複合封裝層於其元件上,其封裝與未封裝的元件相比具有4.2倍壽命(Life-time)的延長效果 ,且經由定電壓隨時間變化,利用OM去記錄其影像,可發現在未封裝時元件在一小時之後,元件皆有因水氣經電化學反應而產生氣泡(H2)所造成的暗點,且幾乎佈滿整個元件,而封裝後的元件在五天的測試後只有因TPD結晶所造成暗點擴大的現象,完全無氣泡產生。所以在以複合封裝膜保護的元件下,可以增加其元件的穩定性,且可有效的阻抗水氣的侵入。

     Recently, optoelectronic industry developed rapidly to increase the requirement of thinner and lighter flat panel display. Undoubtedly, the fabrication of organic light emitting diode (OLED) on flexible plastic substrate was the major technique in the next plat display generation. To date, many patterning techniques have been developed and imprinting technique was one of these. Imprinting lithography has many advantages including low cost, large manufacturing elasticity and ability of 3-D construction. In this study, the imprinting lithography was employed to manufacture 4” flexible OLED display. Additionally, OLED devices were easily affected by the humidity and oxygen and decayed the device performance. Therefore we also studies the encapsulation technique for OLED device.

     In order to solve the thick residual layer and the long time process in hot embossing lithography, the reversal imprinting was developed in this study. The principle of reversal imprinting is on using two functional groups surfactant to modify the mold surface. The hydrophilic side would pull the resist into the groove of the mold. Finally, the treated mold need to give a perfect contact with the substrate. Then the conformal pattern can be transferred. Now, the pattern of 480μm to 100nm can be successfully transferred.

      The OLED display was fabricated by reversal imprinting and MMA/HMDSO muti-layer were deposited by using plasma poly -merization to passivate OLED devices. The Life-time of passivated device protend 4.2 times than un-passivated one, and the device was test under the constant voltage and the morphology was recorded by optic microscopy (OM). After one hour, the dark spots were observed for devices without passivation layer and cover full of the device. The dark spots were estimated by electrical chemical reaction of water vapour, and the bubbles (H2) would form. However, the passivated device can be stored at constant voltage without any bubble formation after five days. A few dark spots were observed by OM and these spots formed by TPD crystallization. Therefore the muti-layer thin film could effectively protect the device to inhibit the water or oxygen diffusion.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 致謝……………………………………………………………………Ⅳ 目錄……………………………………………………………………Ⅵ 圖目錄…………………………………………………………………ⅩⅣ 表目錄…………………………………………………………………ⅩⅩⅠ 第一章 序論……………………………………………………………1 1-1 前言…………………………………………………………………1 1-2 微奈米壓印技術……………………………………………………2 1-3 OLED瓶頸與延長壽命之發展………………………………………6 1-3-1 OLED瓶頸…………………………………………………………7 1-3-2 OLED壽命延長之發展……………………………………………8 1-4 研究動機……………………………………………………………13 1-4-1 微奈米壓印技術的應用在可撓曲OLED的研究動機……………13 1-4-2 OLED封裝技術的研究動機………………………………………14 第二章 理論基礎與文獻回顧…………………………………………21 2-1 壓印技術……………………………………………………………21 2-1-1 前言………………………………………………………………21 2-1-2 壓印技術…………………………………………………………21 2-1-3 逆壓式壓印技術(reversal imprinting)………………………29 2-1-4 模具製作技術……………………………………………………29 2-1-5 脫膜層製作技術及原理…………………………………………32 2-2 OLED原理及其封裝技術……………………………………………35 2-2-1 前言………………………………………………………………35 2-2-1 OLED元件發光理論………………………………………………35 2-2-3 OLED封裝…………………………………………………………37 2-3 電漿原理……………………………………………………………41 2-4 電漿中的化學反應…………………………………………………44 2-4-1 電漿反應的特性…………………………………………………44 2-4-2 氣相中的化學反應………………………………………………45 2-4-3 電漿化學氣相沈積法……………………………………………46 2-4-4 電漿聚合…………………………………………………………48 第三章 實驗方法與步驟………………………………………………56 3-1 實驗流程……………………………………………………………56 3-1-1 微米壓印技術應用於可撓曲OLED之製備………………………56 3-1-2 OLED封裝膜之製備………………………………………………57 3-2 實驗系統設計………………………………………………………58 3-2-1 高溫壓印系統……………………………………………………58 3-2-2 高真空熱蒸鍍系統………………………………………………58 3-2-2-1 抽氣系統………………………………………………………58 3-2-2-2 壓力監控系統…………………………………………………59 3-2-2-3 薄膜厚度監控系統……………………………………………59 3-2-2-4 系統加熱裝置…………………………………………………59 3-2-3 感應耦合式電漿化學氣相沈積系統……………………………59 3-2-3-1 抽氣系統………………………………………………………60 3-2-3-2 壓力監控系統…………………………………………………60 3-2-3-3 流量控制系統…………………………………………………60 3-2-3-4 電漿產生之電源供應器………………………………………60 3-2-3-5 脈衝式直流電源供應器………………………………………60 3-2-4 有機發光元件量測系統…………………………………………61 3-3 實驗材料……………………………………………………………61 3-3-1 基板材料…………………………………………………………61 3-3-2 有機材料…………………………………………………………62 3-3-3 無機材料…………………………………………………………64 3-3-4 金屬材料…………………………………………………………64 3-3-5 基板清洗溶劑及實驗氣體………………………………………64 3-4 實驗步驟……………………………………………………………65 3-4-1 脫膜層製備………………………………………………………65 3-4-1-1 利用自我組裝單分子層(SAM)方式製備Si模板脫膜層……65 3-4-1-2 利用電漿輔助化學氣相沈積法製備Si模板脫膜層…………66 3-4-2 利用高溫壓印來進行圖案轉印…………………………………66 3-4-3 利用逆式壓印法進行圖案轉印…………………………………66 3-4-4 可撓曲式OLED面板製作…………………………………………67 3-4-5 封裝膜之製備……………………………………………………68 3-5 分析與討論…………………………………………………………69 3-5-1 表面型態觀察……………………………………………………69 3-5-2 成長速率分析……………………………………………………71 3-5-3 殘留應力測試……………………………………………………71 3-5-4 元件電流、電壓、輝度量測……………………………………72 3-5-5 元件氧化情況量測………………………………………………72 3-5-6 接觸角分析………………………………………………………73 第四章 開發微奈米壓印技術及其應用於四吋可撓曲OLED面板……79 4-1 模板脫膜層之製備與探討…………………………………………79 4-1.1 前言………………………………………………………………79 4-1-2 以電漿輔助化學氣相沈積法製備F-DLC之抗黏著層…………79 4-1-2.1 前言……………………………………………………………79 4-1-2.2 實驗參數設計…………………………………………………80 4-1-2.3 結果分析與討論………………………………………………80 4-1-3 以自組裝單分子層製備抗黏著層………………………………81 4-1-3.1 前言……………………………………………………………81 4-1-3.2 實驗參數設計…………………………………………………81 4-1-3.3 分析結果與討論………………………………………………82 4-1-4 小結………………………………………………………………82 4-2 利用高溫壓印(HIL)技術用於四吋可撓曲基板之圖案化…………85 4-2-1 前言………………………………………………………………85 4-2-2 圖案轉移完整性的探討…………………………………………85 4-2-2.1 實驗參數設計…………………………………………………85 4-2-2.2 結果分析與討論………………………………………………86 4-2-3 圖案轉移均勻性與殘餘層的探討………………………………87 4-2-3.1 實驗參數設計…………………………………………………87 4-2-3.2 結果分析與討論………………………………………………88 4-2-4 小結………………………………………………………………89 4-3 利用逆式壓印技術(reversal imprinting)應用於四吋可撓曲 基板之圖案化……………………………………………………………94 4-3-1 前言………………………………………………………………94 4-3-2 歷史………………………………………………………………95 4-3-2.1 低極性溶劑改善逆式壓印技術………………………………95 4-3-2.2 低極性高分子阻劑改善逆式壓印……………………………96 4-3-3 以界面活性劑改善逆式壓印技術………………………………96 4-3-3.1 以OTMAB(Octyl tri-methyl aluminum Bromide)對F-DLC 模板做表面改質…………………………………………………………96 4-3-3.1-1 表面改質後水接觸角之探討………………………………96 4-3-3.1-2 圖案轉印之完整性探討……………………………………99 4-3-3.2 以”短碳鏈的對苯甲酸”系列對OTS模板進行表面改質……98 4-3-3.2-1 表面改質後水滴接觸角的探討……………………………98 4-3-3.2-2 圖案轉印之探討……………………………………………99 4-3-4 利用電漿進行表面處理以增加附著力…………………………100 4-3-4.1 前言……………………………………………………………100 4-3-4.2 實驗參數設計…………………………………………………100 4-3-4.3 結果分析與討論………………………………………………101 4-3-5 以界面活性劑改善逆式壓印技術製備奈米級圖案……………103 4-3-5-1 圖案完整度之探討……………………………………………103 4-3-5-2 殘餘層厚度探討………………………………………………103 4-3-5-3 阻劑濃度與圖案縮減度關係探討……………………………104 4-3-6 以逆式壓印法製備無殘留層之圖案化技術……………………105 4-3-7 小結………………………………………………………………106 4-4 利用逆式壓印技術製備四吋可撓曲OLED面板……………………127 4-4-1 前言………………………………………………………………127 4-4-2 結果與討論………………………………………………………128 4-4-3 小結………………………………………………………………130 第五章 利用複合多層薄膜製備OLED封裝膜……………………………137 5-1 前言…………………………………………………………………137 5-2 利用電漿輔助化學氣相沈積法製備MMA高分子封裝薄膜…………138 5-2-1 前言………………………………………………………………138 5-2-2 實驗參數設計……………………………………………………138 5-2-3 鍍膜速率探討……………………………………………………139 5-2-4 殘留應力探討……………………………………………………140 5-2-5 Ca氧化程度之探討………………………………………………141 5-2-6 元件壽命(Life-time)之探討……………………………………142 5-2-7 小結………………………………………………………………143 5-3 利用HMDSO電漿輔助化學氣相沈積法製備封裝薄膜………………152 5-3-1 前言………………………………………………………………152 5-3-2 實驗參數設計……………………………………………………152 5-3-3 鍍膜速率探討……………………………………………………153 5-3-4 殘留應力探討……………………………………………………153 5-3-5 Ca氧化程度的探討………………………………………………154 5-3-6 小結………………………………………………………………155 5-4 利用MMA/HMDSO以電漿輔助化學氣相沈積法製備複合式封裝薄膜…………………………………………………………………………160 5-4-1 前言………………………………………………………………160 5-4-2 實驗參數設計……………………………………………………160 5-4-3 膜厚及應力分析與探討…………………………………………161 5-4-4 定電壓下表面型態改變分析……………………………………161 5-4-5元件壽命(Life-time)之探討……………………………………163 5-4-6 小結………………………………………………………………164 第六章 總結論……………………………………………………………171 第七章 參考文獻…………………………………………………………174 附錄一………………………………………………………………183

    [1] S. Y. Chou, P. R. Krauss, P. J. Restrom, Appl. Phys. Lett. 67 (1995) 3114
    [2] S.Y. Chou, P.R. Krauss, P. J. Restrom, J. Vac. Sci. Technol. B 14 (1996) 4129
    [3] S. Y. Chou, P.R. Krauss, P. J. Restrom, Sciences. 272 (1995) 85
    [4] S. Zankovych, T. Hoffmanm, J. Seekamp, J. U. Bruch and C. M. Sotomayor Torres, Nanotechnology, 12 (2001) 91
    [5] A. Kumar and G. M. Whitesides, Appl. Phys. Lett., 63 (1993) 2002
    [6] Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss and G. M. Whitesides, Sciences, 273 (1996) 347
    [7] T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, C. G. Willson, J. Vac. Sci. Technol. B 18 (2000) 3572
    [8] S. Johnson, D. J. Resnick, D. Mancini, K. Nordquist, W. J. Dauksher, K. Gehoski, J. H. Baker, L. Dues, A. Hooper, T. C. Bailey, J. G. Ekerdt, C. G. Willson, Microelectronic Engineering 67–68 (2003) 221
    [9] X. M. Zhao, Y. Xia and G. M. Whitesides, J. Mater. Chem., 7 (1997) 1069
    [10] Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28 (1998) 153
    [11] K. Y. Suh, Y. S. Kim and H. H. Lee, Adv. Mater., 13 (2003) 1386
    [12] Kahp Y. Suh, Hong H. Lee, Adv. Mater., 16 (2004) 176
    [13] E. L. Hu, Proceedings-The Electrochemical Society, 80-6 (1980) 200
    [14] J. McElvain, J. Appl. Phys ., 80 (1996) 6002
    [15] Wei Wang, Materials Science and Engineering B, 85 (2001) 154
    [16] Zoran D. Popovic, Science, 283 (1999) 1900
    [17] Frank Nuesch, Adv. Funct. Mater., 11 (2001) 116
    [18] Masahiko Ishii and Yasunori Tag Appl. Phys. Lett., 80 (2002) 3430
    [19] S. R. Forrest, Appl. Phys. Lett., 65 (1994) 2922
    [20] Donggeun Jung, J. J. Appl. Phys., 41 (2002) 1336
    [21] Weidong Huang, Materials Science and Engineering B 98 (2003) 248
    [22] Gi Heon Kim, et al., Polymer , 45 (2004) 1879
    [23] Jae Soo Yoo, et al., Appl. Phys. Lett., 79 (2001) 4450
    [24] Gi Heon Kim, et al., Thin Solid Films 467 (2004) 1
    [25] K. Yamashita, et al., J. Phys. D: Appl. Phys., 34 (2001) 740
    [26] Sang-Hee Ko Park, et al., Electrochemical and Solid-State Letters, 8 (2005) H21
    [27] M. S. Weaver, et al., Appl. Phys. Lett., 81 (2003) 2929
    [28] Anna B. Chwang, et al., Appl. Phys. Lett., 83 (2003) 413
    [29] Y. Sato, S. Ichinosawa, and H. Kanai, IEEE J. Sel. Top. Quant., 4 (1998) 40
    [30] E. M. Han, L. M. Do, N. Yamamoto, M. Fujihira, Thin Solid Films, 273 (1996) 202
    [31] J. Cui, Q. Huang, J. C. G. Veinot, H. Yan, Q. Wang, G. R. Hutchison, A. G. Richter, G. Evmenenko, P. Dutta, and T. J. Marks, Langmuir, 18 (2002) 9958
    [32] J. E. Malinsky, J. G. C. Veinot, G. E. Jabbour, S. E. Shaheen, J. D. Anderson, P. Lee, A. G. Richter, A. L. Burin, M. A. Ratner, T. J. Marks, N. R. Armstrong, B. Kippelen, P. Dutta, and N. eyghambarian, Chem. Mater., 14 (2002) 3054
    [33] Huei Tzong Lu, Meiso Yokoyama, Journal of Crystal Growth 260 (2004) 186
    [34] H. M. Grandin, K. Griffiths, P. R. Norton, Applied Surface Science 230 (2004) 163
    [35] Gosuke Sakamoto, Chihaya Adachi Toshiki Koyama, and Yoshio Taniguchi, Appl. Phys. Lett., 75 (1999) 766
    [36] Z. D. Popovic, S. Xie, N. Hu, A. Hor, D. Fork, G. Anderson, C. Tripp, Thin Solid Films 363 (2000) 6
    [37] P. Cusumano, F. Buttitta, A. Di Cristofalo, C. Cal, Synthetic Metals 139 (2003) 657
    [38] L. S. Hung, Thin Solid Films, 363 (2000) 47
    [39] Hong Koo Baika, Applied Surface Science, 241 (2005) 352
    [40] H. Aziz, Z. D. Popovic and N. X. Hu, Appl. Phys. Lett., 81 (2002) 370
    [41] H. Vestweber, and W. Rie, Synth. Met., 91 (1997) 181
    [42] Z. L. Zhang, X. Y. Jiang, S. H. Xu, T. Nagatomo, and O. Omoto, Synth. Met., 91 (1997) 131
    [43] G. G. Adersson, et al., Synthetic Metals 121 (2001) 1675
    [44] Yoon-Heung Tak, Ki-Beom Kim, Hyoung-Guen Park, Kwang-Ho Lee, Jong-Ram Lee, Thin Solid Films, 411 (2002) 12
    [45] Lin Ke, Ramadas Senthil Kumar, Keran Zhang, Soo-Jin Chua, A. T. S. Wee, Microelectronics Journal, 35 (2004) 325
    [46] Ling jie Guo, Peter R. Krauss and Stephen Y. Chou, Appl. Phys. Lett., 71 (1997) 1881
    [47] Mingtao Li, Lei Chen, and Stephen Y. Chou, Appl. Phys. Lett., 78 (2001)3322
    [48] Michael D. Austina, and Stephen Y. Chou, Appl. Phys. Lett., 81 (2002) 4431
    [49] Zhaoning Yu, Wei Wu, Lei Chen, and Stephen Y. Chou, J. Vac. Sci. Technol. B 19.6. (2001) 2816
    [50] Jian Wang, Steven Schablitsky, Zhaoning Yu, Wei Wu, and Stephen Y. Chou, J. Vac. Sci. Technol. B 17.6. (1999) 2957
    [51] Mingtao Li, Jian Wang, Lei Zhuang, and Stephen Y. Chou, Appl. Phys. Lett., 76 (2000) 673
    [52] Haisma, J. Verheijen, M. Heuvel, K. Berg, J. J. Vac .Sci. Technol. B 14 (1996) 4124
    [53] C. G. Willson, M. E. Colburn, United States Patent, (2002) 6, 334, 960
    [54] P. Ruchhoefft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, J. C. Wolfe, C. G. Willson, J. Vac .Sci. Technol. B, 17 (1996) 2965
    [55] M. Colburn, A. Grot, B. J. Chio, M. Amistoso, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, J. Vac .Sci. Technol. B, 19 (2001) 2162
    [56] S. C. Johnson, T. C. Bailey, M. D. Dickey, B. J. Smith, E. K. Kim, A. T. Jamieson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, SPIE Microlithography Conference, 2003
    [57] D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquista, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, N. Schumaker, SPIE Microlithography Conference, 2003
    [58] I. McMackin, P. Schumaker, D. Babbs, J. Choi, W. Collison, S. V. Sreenivasan, N. Schumaker, M. Watts, R. Voisin, SPIE Microlithography Conference, 2003
    [59] Y. N. Xia, J. Tien, D. Qin, G. M. Whitesides, Langmuir, 12 (1996) 4033
    [60] Y. N. Xia, M. Mrksich, E. Kim, G. M. Whitesides, J. Am. Chem. Soc., 117 (1995) 9576
    [61] A. Kumar, H. A. Biebuyck, G. M. Whitesides, Langmuir, 10 (1994) 1498
    [62] A. Carvalho, M. Geissler, H. Schmid, B. Michel, E. Delamarche, Langmuir, 18 (2002) 2406
    [63] J. C. Love, D. B. Wolfe, M. L. Chabinyc, K. E. Paul, G. M. Whitesides, J. Am. Chem. Soc. 124 (2002) 1576
    [64] T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, G. M. Whiteside, Langmuir 18 (2002) 5314

    [65] T. W. Odom, V. R. Thalladi, J. C. Love, G. M. Whitesides, J. Am. Chem. Soc., 124 (2002) 12112
    [66] H-W Li, B. V. O. Muir, G. Fichet, W. T. S. Huck, Langmuir, 19 (2003) 1963
    [67] N. B. Larsen, H. Biebuyck, E. Delamarche, B. J. Michel, J. Am. Chem. Soc., 119 (1997) 3017
    [68] N. J. Jeon, K. Finnie, K. Branshaw, R. G. Nuzzo, Langmuir, 13 (1997) 3382
    [69] X. Cheng, L. J. Guo, and S. W. Pang, J. Vac. Sci. Technol. B, 20.6. (2002) 2872
    [70] L. J. Guo and S. W. Pang, J. Vac. Sci. Technol. B, 20.6. (2002) 2881
    [71] L. A. Poter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak, Nano Lett., 2 (2002) 1369
    [72] H. Zhang, S. W. Chung, C. A. Mirkin, IEEE Journal of Selected Topic in Quantum Electronics, 10 (2003) 3, 43
    [73] Lon A. Porter, Jr. , Hee Cheul Choi, J. M. Schmeltzer, Alexander E. Ribe, Lindsay C. C. Elliott, and Jilian M. Buriak, Nano, (2002)
    [74] Ikurou Umezu, Takashi Yoshida, Kimihisa Matsumoto, and Akira Sugimura, Mitsuru Inada, Appl. Phys. Lett., 81 (2002) 1492
    [75] M. Lazzarino, S. Heun, B. Ressel and K. C. Prince, P. Pingue, and C. Ascoli, Appl. Phys. Lett., 81 (2002) 2842
    [76] M. Beck, IEEE-NANO, S1.2 (2002) 17
    [77] R.W. Jaszewski , H. Schift , B. Schnyder, A. Schneuwly, P. Groning, Applied Surface Science, 143 (1999) 301
    [78] Gun-Young Jung, Zhiyong Li, Wei Wu, Yong Chen, Deirdre L. Olynick, Shih-Yuan Wang, William M. Tong, and R. Stanley Williams, Langmuir, 21 (2005) 1158
    [79] R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B. Sinclair, V. S. Valencia, and P. A. Cahill, Appl. Phys. Lett., 66 (1995) 3618
    [80] P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Phys. Rev. B, 55 (1997) R656
    [81] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, and T. O. Graham, Appl. Phys. Lett., 80 (2002) 2517
    [82] H. Murata1, G. G. Malliaras, M. Uchida, Y. Shen, and Z. H. Kafafi1, Mat. Res. Soc. Symp. Proc., 665 (2001) C6.3.1
    [83] M. Matsumura, T. Akai, and M. Saito, Jpn. J. Appl. Phys., 35 (1996) 3468
    [84] D. Troadec, G. Veriot, R. Antony, and A. Moliton, Synth. Met., 124 (2001) 49
    [85] A. L. Burin, and M. A. Ratner, J. Phys. Chem. A, 104 (2000) 4704
    [86] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. Part 2, 27 (1998) L269
    [87] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. Part 2, 27 (1988) L713
    [88] W. B. Im, H. K. Hwang, J. G. Lee, K. Han, and Y. Kim, Appl. Phys. Lett., 79 (2001) 1387
    [89] M. Fujihira, L. M. Do, A. Koike, and E. M. Han, Appl. Phys. Lett., 68 (1996) 1787
    [90] Y. Sato, S. Ichinosawa, and H. Kanai, IEEE J. Sel. Top. Quant., 4 (1998) 40
    [91] W. RieB, H. Riel, P. F. Seidler, and H. Vestweber, Synth. Met., 99 (1999) 213
    [92] E. M Han, L. M. Do, N. Yamamoto, M. Fujihira, Thin Solid Films, 273 (1996) 202
    [93] M. Carrarda, S. G. Contoa, L. S. Ahmeda, D. Adés, and A. Siove, Thin Solid Films, 352 (1999) 189
    [94] J. Cui, Q. Huang, J. C. G. Veinot, H. Yan, Q. Wang, G. R. Hutchison, A. G. Richter, G. Evmenenko, P. Dutta, and T. J. Marks, Langmuir, 18 (2002) 9958
    [95] J. E. Malinsky, J. G. C. Veinot, G. E. Jabbour, S. E. Shaheen, J. D. Anderson, P. Lee, A. G. Richter, A. L. Burin, M. A. Ratner, T. J. Marks, N. R. Armstrong, B. Kippelen, P. Dutta, and N. Peyghambarian, Chem. Mater., 14 (2002) 3054
    [96] J. Cui, Q. Huang, Q. Wang, and T. J. Marks, Langmuir, 17 (2001) 2051
    [97] J. Cui, Q. Huang, J. C. G. Veinot, H. Yan, and T. J. Marks, Adv. Mater., 14 (2002) 565
    [98] Q. Huang, J. Cui, J. G. C. Veinot, H. Yan, and T. J. Marks, Appl. Phys. Lett., 82 (2003) 331
    [99] Q. Huang, J. Cui, H. Yan, J. G. C. Veinot, and T. J. Marks, Appl. Phys. Lett., 81 (2002) 3528
    [100] Hirofumi Kubota, Journal of Luminescence 87-89 (2000) 56
    [101] Akira Sugimoto, Hideo Ochi, Soh Fujimura, Ayako Yoshida, Toshiyuki Miyadera, IEEE J. Sel. Top. Quant., 10 (2002)107-114
    [102] 洪昭南,電漿反應器,化工技術,第三卷,第三期,124-135,
    1995
    [103] H. Yasuda, Plasma Polymerization, 1985.
    [104] J. R. Roth, Industrial Plasma Engineering-Volume, Institute of Physics Publishing, London, 1995.
    [105] 曹義昌,國立成功大學化工所碩士論文,1997
    [106] D. Korzec, D. Theirich, F. Werner, K. Traub, J. Engemann, Suface and Coatings Technology, 74-75 (1995) 67
    [107] D. Korzec, K .Traub, Thin Solid Film, 281-282 (1996) 143
    [108] Hur W. Adamson, Physical Chemistry of Surfaces, p.26-32, Sixth Edition, 1997
    [109] 謝建德、陳金銘、林大森、郭蓉蓉、林秀芬、洪松慰、董志偉、蔡雯瑤,工業材料雜誌,206期,93-97頁,2004年2月。
    [110]鄭總輝、陳振鑾、陳致源、鄭欽峰,工業材料雜誌,218期,80-88頁,2005年2 月。
    [111] Roya Maboudian, J. Vac. Sci. Technol. B, 15 (1997) 1
    [112] H. Liu, et al., Thin Solid Films, 381 (2001) 135
    [113] H. C. Scheer, Microelectronic Engineering 56 (2001) 311
    [114] D. W. van Krevelen, Properties of Polymers, Elsevier, Amsterdam, 1990
    [115] H. Schift, Microelectronic Engineering, 54 (2000) 229
    [116] Hong H. Lee, et al., Appl. Phys. Lett., 76 (2002) 870

    下載圖示 校內:2010-08-15公開
    校外:2010-08-15公開
    QR CODE